
NAVAL POSTGRADUATE SCHOOL
Monterey, California

,, 0

IRAV

N

DTIC

S LECTE
JUN 2 9 1989

D D THESIS

IMPLEMENTATION OF A
DISTRIB UTED OBJECT-ORIENTED

DATABASE MANAGEMENT SYSTEM

Lynn A. Wyrick

March 1989

Thesis Advisor: Valdis Berzins

Approved for public release; distribution is unlimited.

89 6 218 0 39

Ui I i I I I l

CRt L4Ssif icA1 uiU OF I 14 IAi3.

REPORT DOCUMENTATION PAGE
IliREPORT SECURITY CLASSIFICATION lb RESTRICI VE MARKINGSL1, Unclassified
Ia. SECURITY CLASSI:ILAIION AUIIIOII Y 3 DISIRIBUIIONIAVAILABILITY OF tEPORT

2b Approved for public release;
Zb DECLASSIFICATIONNI OUWNGRADNG~ SI4DULE distribution is unlimited.

4. PERFORMING ORGANIZAION REPORT NUMBER(S) 5 MONITORING ORGANIZAI'ION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SIM OL Ia. NAME OF MONITORING ORG"NIZA7ION
(If applicable)

Naval Postgraduate School Code 52 Naval Postgraduate School

6c. ADDRESS (City. State. and ZIP Code) 7b. ADDRESS (Coy, Slale, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Sa. NAME OF FUNDINGSPONSORING 8o OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (It apphcable)

St. ADDRESS (Cot), State, and ZIP Code) 10 SOURCE O
r FUNDING NUMtERS

PROGIPAM PROJECT I ASO, WORK UNI11

ELEMENT NO NO NO ECCESSION NO

11 TITLE (include Security Clasuification)

IMPLEMENTATION OF A DISTRIBUTED OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEM

12 PERSONAL AUTHOR(S)
Wyrick, Lynn A.

13b TYPE OF REPORT 11.3b TIME COVERED 14 DAIE Or REPORT (Year. Month. De)) '5 PAGE COUNT
Master's Thesis rFIOM To March 1989

16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not

reflect the official policy or position of the Department of Defense or the U.S. Government.

I1 COSA'I CODES 18 SUBJECT iERMS (Continue on ,everje of necessary and identify by block number)

FIELD GROUP SUP-GRO'. ' Distributed DBMS, Object-Oriented DBHS, concurrency,
._~b____-'Database Implementation, Database Design, Distributed:)

19 ABStRACT (Continue ol reverse if nicelsabyad irpr~hyrb block nBae Srf
-

r

Distributed database management systems provide for more flexible and efficient
processing. Research n object-oriented database management systems is revealing an
abundance of additional bczefits that cannot be provided by more traditional database
management systems. The'Naval Military Personnel Command (NMPC) is used as a
case study to evaluate the requhements of transitioning from a centralized to a
distributed database management system. Features and characteristics of both
distributed and object-oriented database management systems are used to detennine
the appropriate configuration for ditferent application environments. The distributed
and object-oriented concepts are evalu'ted in detail in order to allow an organization
to appropriately select the type of\ system to meet their needs. Transition
requirements for NMPC, in particular, e identified and a suggested plan of action is
presented. 1 . - -

20 DISTRIBUTIONIAVAILABILITY OF ABSIRACT 21 ABSTRACT SECURITY CLASSIFICATION
K]UNCLASSIIEDUNLIMITED 0 SAME AS RPT 0 OTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22C OFFICE SYMBO2
Prof. Valdis Berzins (408)-646-2461 52Be

DD FORM 1473, 84 MAR 83 APR edition may be used unti exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

in l s i ec $.,.,,m.. ",,ll-l~l

Approved for public release; distribution is unlimited.

IMPLEMENTATION OF A DISTRIBUTED
OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEM

by

Lynn A. Wyrick
Lieutenant, United States Navy

B.S., Marquette University, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1989

Author: ,i. /'
Lynn A. Wyrick

Approved by: ____________

Valdis Berzns, Thesis Advisor

Luqi, Se nd 7,ade

Robert B. McGhee, Chairman
Department of Corrputer Science

Kneale T. ,
Information and Pofi SGi nces

ti

ABSTRACT

Distributed database management systems provide for more flexible and

efficient processing. Research in object-oriented database management

systems is revealing an abundance of additional benefits that cannot be

provided by more traditional database management systems. The Naval

Military Personnel Command (NMPC) is used as a case study to evaluate

the requirements of transitioning from a centralized to a distributed database

management system. Features and characteristics of both distributed and

object-oriented database management systems are used to determine the

appropriate configuration for different application environments. The

distributed and object-oriented concepts are evaluated in detail in order to

allow an organization to appropriately select the type of system to meet

their needs. Transition requirements for NMPC, in particular, are identified

and a suggested plan of action is presented.

Accesion For

NTIS C"RA&I
opy DTIC TAB -

ISPECT U:nrooj-.ced 0

By
ODs t: TbuT ion I

Av-iit,.bihly Codes

A~.~~ Ilor

. ..l-I i

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. OBJECTIVES 3

C. RESEARCH QUESTIONS 4

1. Distributed Research 4

2. Object-oriented Research 4

D. SCOPE, LIMITATIONS, ASSUMPTIONS 5

1. Scope 5

2. Lim itations 5

3. Assum ptions 5

E. LITERATURE REVIEW AND METHODOLOGY 6

F. SUMMARY OF FINDINGS 6

G. ORGANIZATION OF STUDY 7

II. BACKGROUND 9

A. OVERVIEW 9

B. ORGANIZATIONAL STRUCTURE 10

C. NMPC-4 PERSONNEL DISTRIBUTION FUNCTIONS ... 11

1. Inventory Prediction and Allocation 12

2. M anning 12

iv

3. Individual Assignments 12

D. CURRENT AUTOMATED INFORMATION SYSTEMS 14

E. CURRENT HARDWARE ENVIRONMENT 16

F. NMPDS TRANSITION PLAN 17

G. JUSTIFICATION FOR NMPDS TO TRANSITION TO A

D B M S 18

H. CONCLUSION 19

III. DISTRIBUTED METHODS 21

A. OVERVIEW 21

1. Centralized Versus Distributed Systems 21

2. Distributed Definitions 23

B. EVALUATION OF DISTRIBUTED METHODS 25

1. Distributed Architectures 26

a. Network-Oriented Operating System (NOS) 27

b. Network Access Processor (NAP) 27

c. In-House Configuration 29

d. Distributed System Environment 30

e. SHARD 31

f. Distributed Architecture Layers 35

2. Proce.; Handling Algorithms 35

a. Specification of Time Dependencies 36

b. Distributed Scheduling 38

V

c. Task Response Time Model 40

d. Evaluation of Process Handling Algorithms 44

3. Data Handling Algorithms 45

C. CONCLUSIONS 50

1. Management Issues 50

a. Performance Tuning 50

b. Integration 51

2. NMPC Requirements 52

IV. OBJECT-ORIENTED DBMSs 54

A. INTRODUCTION 54

B. FEATURES OF OBJECT-ORIENTED DBMSs 57

C. EVALUATION OF OBJECT-ORIENTED SYSTEMS 63

1. PROBE: An Object-Oriented, Extensible Database

System 63

2. Robust Generation of Unique Identifiers 67

D. CONCLUSION 69

V. KNOWLEDGE BASED SOFTWARE

A SSIST A N T 72

A. INTRODUCTION 72

B. KBSA DESIGN 73

C. COMPARISON OF PROBE AND KBSA 77

D. CONCLUSION 78

vi

VI. TRANSITION ANDI$NWLRATION 79

A. INTRODUCTION 79

B. HARDW ARE 80

1. Background 80

2. Requirements Contracts 83

3. Procedures 85

4. Desktop III 87

5. Alternative Considerations 89

6. Conclusions 90

C. SOFTW ARE 92

D. TELECOMMUNICATIONS 97

E. CONCLUSION 99

VII. CONCLUSION 100

A. SUM M ARY 100

B. RECOMMENDATIONS 101

LIST OF REFERENCES 106

BIBLIOGRAPHY 109

INITIAL DISTRIBUTION LIST iio

vii

LIST OF FIGURES

Figure 1 NMPC-47 ISM Support 11

Figure 2 The Naval Military Personnel Distribution System 16

Figure 3 NMPDS Hardware Configuration 17

Figure 4 Levels of Architecture 30

Figure 5 Access Control 75

Figure 6 NMPDS Conversion Plan of Action 104

viii

I. INTRODUCTION

A. BACKGROUND

Technology available today provides support to organizations which are

required to process large amounts of data. Database management systems

were designed specifically to assist those organizations in efficiently

managing their information. Until recently, database management systems

have primarily been implemented in centralized environments, using a

central data processing center, where users share system resources and data.

New concepts in database management systems are being developed to

improve on the technology currently in use. hi particular distributed and

object-oriented database management systems are models which are

producing the most efficient and flexible results for moving toward the

future. Organizations are faced with the problem of evaluating the database

models and the software produced, and to determine the most appropriate

choice in terms of their requirements in the years to come.

This thesis investigates the requirements of transitioning from a

centralized database management system (DBMS) to a distributed, object-

oriented DBMS at the Naval Military Personnel Command (NMPC).

Distributed processing and distributed data iocation may be the most

appropriate means to process information in the Navy's systems.

- ~ .I it I i II

Object-oriented DBMSs are also being researched as an efficient, flexible

and extensible way to implement database systems.

Distributed processing brings about special problems not found in

centralized processing. The primary issues, data synchronization and

integrity, will be addressed. There are a variety of distributed algorithms

designed to maintain data integrity in a system where there may be site

failures, communication failures, or timing delays. Some algorithms are

much more complicated than others. They will be evaluated in terms of

complexity and requirements for pure data integrity (i.e., is 100% data

synchronization required?). NMPC's needs will be considered in terms of

the complexity and efficiency provided by the algorithms.

A new concept in the area of database management is object-oriented

database management systems. Object orientation has been identified as the

key to extensibility for database systems. The object classes created allow

a database to reach beyond traditional database applications. The data base

is then defined in terms of the object classes created. This idea allows the

users to define their own concepts in the database. This thesis investigates

several systems which have been developed using object orientation. These

systems are evaluated in terms of the requirements of the Naval Military

Personnel Command. The level of effort required and benefits of the

system are discussed.

The Naval Military Personnel Command is responsible for distributing

the 600.000 naval personnel. This can be a rather complex job with many

2

factors influencing the decisions made. Automated support is currently in

production in the form of applications programs written in a COBOL

generator code.

The K, iowledge Based Software Assistant (KBSA) developed by

Honeywell Systems and Research Center is a distributed, object-oriented

database management system. The KBSA is a tool developed to aid a team

of programmers in developing large software projects. The requirements

which drove development of the KBSA will be evaluated, the system will

be studied in depth, and recommendations made concerning the application

of a KBSA-like system for NMPC.

Transition requirements for NMPC to move from the current system to

the proposed system will be addressed. Interface issues will also be

discussed in terms of what an organization must consider in the process of

designing a new system.

B. OBJECTIVES

The Naval Military Personnel Command (NMPC-47) has developed

four major automated information systems (AISs) in COBOL using the Sage

APS Code Generator. These systems are used by the Distribution

Department (NMPC-4). This thesis investigates the requirements of

transitioning these projects from a centralized DBMS environment to a

distributed DBMS at workstations, using NMPC as a case study, and makes

recommendations about the direction NMPC may go. Object-oriented and

3

relational DBMSs will be compared, distributed systems will be evaluated,

and transition requirements will be stated. This thesis attempts to address

the issues involved that must be considered.

C. RESEARCH QUESTIONS

This thesis investigates the definitions of concepts outlined in the

following lists:

1. Distributed Research

a. What is a distributed DBMS?

b. What are its properties?

c. Is a true distributed system practical?

d. How much effort would be involved in the transition?

e. What area would most of the effort be concentrated?

f. What software should be used in terms of what is available to

NMPC?

2. Object-oriented Research

a. What is an object-oriented DBMS?

b. How is it used?

c. For what applications is it best suited?

d. How can we combine the concepts of distributed and object-

oriented databases?

e. Is combining these concepts the best way to go for the future?

4

f. How much effort is involved in the transition?

g. Are the efforts worth the benefits?

D. SCOPE, LIMITATIONS, ASSUMPTIONS

1. Scope

The Model 204 (M204) database management system is a

relational-like DBMS developed by the Computer Corporation of America

(CCA). It has been partially implemented by the Distribution Support

Division in a centralized environment. However, functions of the individual

assignment and placement officers lend themselves to a distributed

environment because they each work with their own sections of the

databases. Research in object-oriented DBMSs is proving this area to be

more beneficial than traditional DBMSs, more cost effective, and more

adaptable to change. Object-oriented DBMSs will be evaluated and

compared with Model 204. The results of the study will be combined into

a policy management guide for NMPC.

2. Limitations

There may be two limitations which affect the recommendations

made in this thesis. The first is financial considerations. Budget cuts may

prevent implementation of the DBMS. The second limitation is personnel.

Loss of experienced personnel and reductions of billets will hinder the

progression of the implementation by requiring new personnel to be trained

and brought up to speed on the projects.

5

3. Assumptions

The five major assumptions made in this thesis are: 1) NMPDS

will transition to a DBMS, 2) The DBMS software recommended will be

available on the market, 3) the hardware required to implement a distributed

system will be available, 4) optical disk storage may be used so high

resolution screens will be required to display the images, and 5) the Base

Information Transfer System (BITS) will be implemented. (BITS is

sponsored by OP-162 to carry out the transition of phone lines on Navy

bases from analog to digital lines.)

E. LITERATURE REVIEW AND METHODOLOGY

A major portion of the research effort was through review and

comparison of sources of literature. An evaluation of the literature has led

to the conclusions made in the thesis. Data was collected through a variety

of teclical manuals, academic papers, and system specifications in order to

obtain a better understanding of distributed algorithms, distributed DBMSs,

and object-oriented systems. Interviews were conducted with software

developers, program managers, and database users to collect information not

otherwise formally documented.

F. SUMMARY OF FINDINGS

The object-oriented model of the database management system is indeed

more flexible, extensible, and able to help solve more difficult applications

6

than traditional models. The research in this area has given every

indication that this will become a more efficient and useful way to manage

database systems. However, because the area is still under research,

unforseen problems may not have been discovered as yet. The systems thus

far developed have been relatively application specific. Object-oriented

DBMSs lend themselves nicely to non-traditional, more complicated

applications. Relational database models were designed primarily to handle

record processing. The relational model, and languages which support it,

have been on the market for a few years and have been sufficiently tested.

The applications at NMPC are primarily record processing applications, and

therefore do not require the more sophisticated object-oriented model. The

recommendation made in the thesis is to use a relational type of model for

the DBMS to be used in a distributed environment. The organization is

already familiar with and satisfied with Model 204, and can therefore build

on knowledge already gained through the use of the system.

G. ORGANIZATION OF STUDY

Chapter 2 will present the background of the problem. NMPC is

responsible for the allocation and manning of Navy commands, and the

distribution of naval personnel in support of the commands' needs. NMPDS

is the automated support developed traditionally with COBOL and flat files.

Justification for moving to a DBMS is provided in this chapter.

7

Chapter 3 investigates a number of methods for implementing

distributed algorithms and their applications to data base management. It

compares, contrasts, and analyzes these various methods in terms of actual

software implementation. Guidelines are outlined for determining those

applications suited for distributed processing, and some possible extensions

made possible by this DBMS model.

Object-oriented DBMSs are reviewed in Chapter 4. Ongoing efforts in

this field of study are analyzed. Methods and levels of effort required to

implement an object-oriented database system are discussed. Object-

oriented DBMS applications are compared to traditional DBMS applications

and future extensions are discussed.

The Knowledge Based Software Assistant (KBSA) is used as a case

study in Chapter 5 which combines the theories of distributed and object-

oriented data base management systems. Level of effort required to

implement the KBSA and benefits realized are reviewed.

Transition requirements in terms of hardware, software, and

communications are presented in Chapter 6. This chapter includes

acquisition of new ADP equipment, identifies any interface issues which

will pertain to the NMPDS implementation of the DBMS.

The final chapter presents conclusions, recommendations, and constructs

a rough plan of action for the NMPDS implementation of the database

system.

8

II. BACKGROUND

A. OVERVIEW

Organizations must consistently look at new technology to find better,

faster, and more efficient ways to process information within an

organization. Database management systems were specifically designed to

help manage data. There is a current trend toward distributed systems,

which provide additional benefits by virtue of their distributed nature. The

system currently Ji use, the Naval Military Personnel Distribution System

(NMPDS) is using data files to store the data. A DBMS, Model 204, has

been implemented for use with Ad Hoc queries and report generation. If

NMPC integrates NMPDS fully to the Model 204 DBMS, then the

organization will be operating in a centralized DBMS environment.

The Distribution Support Division (NMPC-47) is responsible for

supporting the Distribution Department (NMPC-4) in the execution of

personnel distribution. The Distribution Department, which consists of

approximately one thousand members, is responsible for distributing over

600,000 Navy personnel. Prior to 1984, this complete process was handled

by passing volumes of paper from desk to desk. The Distribution Support

Division developed four automated information systems (AISs) to support

the Distribution Department. Along with the development of these systems,

9

a proposal for a hardware and software procurement was written. The Navy

awarded a contract for a series of IBM 4381 minicomputers, and the DBMS

included in the award was CCA's Model 204 DBMS. NMPC-47 would like

to develop a "strawman" to guide their planning issues for the next three to

five years. This chapter will provide detail on the functions performed

within the Distribution Department, the four automated information systems

currently in existence, and a current reorganization planned by NMPC-47.

B. ORGANIZATIONAL STRUCTURE

The Naval Military Personnel Command Distribution Department

(NMPC-4) is responsible for assigning officer and enlisted active duty

personnel in accordance with the needs of both the Navy and the

individual's career; for controlling the manning of activities; and performing

any additional functions as may be required.

The Distribution Support Division (NMPC-47) supports NMPC-4 by

providing the ADP resources required for personal distribution management.

The Enlisted Personnel Management Center (EPMAC) is to provide

centralized management support for active duty enlisted personnel, and to

collect and disseminate manpower and personnel information to Navy

activities. EPMAC reports to and works closely with NMPC to provide the

Manning Control Authorities (MCA's) in the fleet with accurate manpower

and personnel information. EPMAC provides their own ADP support and

shares ADP resources with the Naval Reserve Personnel Command (NRPC).

10

NMPC and EPMAC work together to ensure the fleet is manned

according to the number of available personnel, and that the readiness of

the fleet is at an acceptable level. NMPC-47 is the Information Support

Manager (ISM) for both NMPC-4 and EPMAC, and is therefore responsible

for the support and coordination of ADP at both commands. Figure 1

illustrates the relationship between NMPC-4, NMPC-47 and EPMAC in

terms of both distribution support and ADP support.

oDistribution

D istrib utio n S upport
and ADP

Support

ADP

Information Support

Manager (ISM)

Figure 1 NMI'C-47 ISM Support

C. NMPC-4 PERSONNEL DISTRIBUTION FUNCTIONS

The Distributions functions can be categorized into three areas: 1)

Inventory Prediction and Allocation, 2) Manning, and 3) Individual

11

Assignments [Ref. 1]. These areas are described in the following

paragraphs.

1. Inventory Prediction and Allocation

The number of qualified people available to fill the number of

billets (jobs) available determines the level of manning at Navy commands.

People are constantly entering and leaving the Navy, so predicting the level

of manning is required. This function ensures that each unit receives its

share of qualified people, and is performed on a routine basis.

2. Manning

Once a unit's "fair share" of personnel is determined, then the unit

vacancy must be evaluated. The number of people onboard are compared

to the number of billets at that command. Shortages and vacancies are

categorized by "fill" time and priority indicators. These vacancies become a

demand for personnel to be assigned to them.

3. Individual Assignments

Individuals available for assignment are matched to those vacancies

which best meet the individual's needs and the readiness demand of the

unit. This information is fed back into the inventory process to keep that

data base accurate.

Specifically, individuals are assigned through the following process.

Personnel due to rotate a certain number of months ahead are earmarked as

"available" for assignment. Jobs which will become vacant in the near

future are "posted". This is the notification process to the detailers. These

12

vacant jobs have certain skills associated with them. A detailer chooses a

person with those skills, or determines the training required to give an

individual that skill. He must then ensure the training is available during

the timeframe required; that is, between the rotation date and check in date,

and makes reservations to die training. The "proposal" of the person to fill

the job is then passed to the placement officers for approval. The proposed

set of orders may be required to have approvals from other offices within

the Distribution Department [Ref. 1].

Once the set of orders has been approved, the cost to move the

member and his family is then estimated. Variables affecting the cost

estimate are: distance moved (mileage), number of dependents, and enroute

training. These cost estimates are used to compute annual budgets for PCS

moves. This funding plays a major role in determining the amount of

moves that may be executed by a detailer throughout a fiscal year.

The final step in the assignment process is to produce the set of

orders for the individual. This process brings together all pertinent

information about the transfer of duty into a single document. Generally,

the orders contain detaching activity information, intermediate (training)

information, ultimate duty station information, and accounting data. The

orders may also contain any number of standard or special instructions.

13

D. CURRENT AUTOMATED INFORMATION SYSTEMS

The Distribution Support Division was tasked with supporting the

functions of the Distribution Department through automated support.

NMPC-47 designed and developed four systems: OAIS, EAIS, SPIRIT, and

DMSS, which collectively are referred to as the Naval Military Personnel

Distribution System (NMPDS), and are described in more detail in the

following paragraphs. The systems in NMPDS support the management of

training, allocation, and assignments of active duty officer and enlisted

personnel. A system of rapid prototyping was used to develop these

systems.

The Officer Assignment Information System (OAIS) was designed to

support the distribution and assignment of officer personnel. This system

was the first to go into production with its Surface Warfare Module in

1984. OAIS supports a "chop chain" which allows the detailers to route a

set of orders from desk to desk electronically for approvals. It is now fully

in production supporting all communities of officers and automatically

producing the orders.

The Support Programs for Incentives, Retention and Training (SPIRIT)

assignments was the next project to go into production. This system started

out supporting training assignments (A-schools) for Recruits transferring out

of boot camp (Recruit Training Centers). This training determines the

rating or major skill enlisted personnel follow throughout their careers. The

assignment process occurs weekly, and uses a linear program to optimize

14

the best recruit-skill match in a batch processing environment. SPIRIT also

supports on-line training assignment reservations made to other Navy

schools. These schools are attended enroute to new duty stations, and

supplement knowledge already gained in a primary skill area. Both officer

and enlisted detailers use SPIRIT to reserve training seats. The final area

supported by SPIRIT is the Incentive and Retention Programs. Information

is collected and processed through SPIRIT to manage the programs set up

to retain sailors in the Navy with above average performance.

The Enlisted Assignment Information System (EAIS) supports the

detailers in the distribution and assignment of enlisted personnel. Its

Personnel Information Module (PIM) went into production in 1984, and the

Assignment Decision Module and Order Production Module are scheduled

to be in full production by 1990. This system has on-line communications

with EPMAC, New Orleans, where the enlisted placement officers review

assignments.

The Distribution Management Support System (DMSS) supports

inventory prediction, allocation, and manning, which guide policy decisions

in the individual assignments process. This system includes decision

support system (DSS) modules to aid in the management of the following

areas: Manning Plans, Projections, Personnel Requisitions, and Allocation &

Nomination systems for both officer and enlisted personnel. The programs

designed in this system deal with large amounts of data since the processing

applies to Navy wide applications. These modules are run in a batch

15

environment and use terminals to display results of the processing on-line.

Figure 2 shows the relationship between the projects in NMPDS.

Manpower

DMVSS

-Allocation
-Manning

I--nvento

Tranig SPIRIT OAIS

Training -Training EAIS Personnel
Reservations -PAsgmts

QAIS: Officer Assignment Information System
EAIS: Enlisted Assignment Information System
SPIRIT: Support Programs for Incentives, Retention & Training assignments
DMSS: Distribution Management Support System

Figure 2 The Naval Military Personnel Distribution System

E. CURRENT HARDWARE ENVIRONMENT

The NMPDS is running on a series of IBM's located in Washington,

DC, New Orleans, Louisiana, and Memphis, Tennessee. The current

hardware configuration is depicted in Figure 3 and consists of five IBM

4381s in three different cities. lhe configuration is as follows:

Washington DC : Tlree 4381's
1) OAIS, EAIS, SPIRIT, 2) DMSS, Information Center
3) Maintenance

New Orleans Two 438 I's
1) DMSS, 2) EPMAC, NRPC

Memphis 3720 Communications Controller
1) CNTT, SPIRIT

16

WASHINGTON, D.C.

4381 4381 4381
IDMSS OAIS

EAIS lMaintcnancc
lnfo. Cen ter SPIRIT

NEW ORLEANS, LA. MEMPItS, TN.

4381 4381 00. 3270
EP7ACDMSS NRPC SPIRIT

Figure 3 NMPDS Hardware Configuration

F. NMPDS TRANSITION PLAN

The Distribution Suppol Division plans to reorganize NMPDS in ofder

to provide for a more logical scheme for identifying, categorizing, and

budgeting the systems [Ref. 1]. They will be organized more closely by

function. OAIS, EAIS, SPIRIT and subsystems supporting the assignment

function will be included in the Assignment Management Support System

(AMSS). Systems supporting the allocation function will be aggregated

under the Inventory Management Support Systems (IMSS), and those

systems supporting the manning function will be grouped under the

Maiming Readiness Support System (MRSS). Finally, subsystems in the

17

NMPDS which do not directly support any of the distribution functions but

do support other Manpower, Personnel and Training (MPT) processes will

be addressed under the Manpower, Personnel and Training Support System

(MIPTSS). NMPC-47 intends to transition to this categorization during the

first quarter of FY-90.

G. JUSTIFICATION FOR NMPDS TO TRANSITION TO A DBMS

NMPC-47 requested that an evaluation be performed on the need for

converting the NMPDS data files to a database management system

(DBMS). The study was performed by Oak Ridge National Laboratories

through interviews with NMPC-47 personnel, contractor support personnel,

and reading system life cycle documentatiorEach of the four systems in

NMPDS were developed individually, and therefore each one provides for

its own input, databases, and output. Some of the systems use the same or

similar data and so converting these systems to a DBMS can bring about a

number of benefits not currently realized.

The study found the following benefits. Data could be evaluated on a

NMPDS (or departmental) level instead of approaching each system for

information needed. Data transfers and data redundancy produce a number

of problems including data integrity, storage, and processing time. The

second major benefit discovered by the study was that query and report

capabilities would be expanded and improved in terms of data integration

and availability. Allowing the users to generate their own requests would

18

improve system responsiveness to the user. The integrated data would

allow for better decision support and modelling capabilities.

One of the possible problems with implementing a DBMS is that the

present mode of software development is in using the Sage COBOL code

generator. The decision must be made whether or not to continue this

effort. Based on this decision, a DBMS product may be chosen which

would interface the Sage code with the DBMS, or an interface must be

developed between the two. The level of effort required to convert the files

to a DBMS would be substantial, and so a commitment must be made to

support the effort at all levels of personnel. It must be realized that the

benefits from a DBMS outweigh the cost to convert the system [Ref. 2.

H. CONCLUSION

The timing of NMPC-47 to reorganize the systems under more

functional categories provides for an excellent opportunity to combine

redundant functions and data in each of the systems by converting NMPDS

to a database management system. The new capabilities provided by a

DBMS are not currently represented in the Sage code, and so the

conversion would require a new look at the applications programs. The

current automated systems were designed providing the best support

available; however, with the new developments in database software, these

functions can be supported in completely different (and better) ways by the

DBMS.

19

The Distribution Department is divided into ten divisions and each

performs unique functions in support of personnel distribution. The

divisions manipulate their own data but use corporate data as an information

resource. This type of environment lends itself nicely to a distributed

environment. Data owned by a division can be located near and changed

by that division. Data that cannot be changed by the divisions, for example

activity data or manning data, is updated through batch processing on a

nightly or weekly basis. The primary exception to this rule is training

reservation information. The detailers across divisions may reserve seats in

training classes, and so this data can be changed by more than just one

division. Synchronization of the seat reservations must be considered. This

thesis assumes the decision to transition to a DBMS has been made, and

investigates some models, architectures, and DBMS software to help

NMPC-47 determine the appropriate choices for the NMPDS applications.

20

III. DISTRIBUTED METHODS

A. OVERVIEW

Evaluation of distributed methods is done in this chapter by first

comparing centralized systems with distributed systems. Some definitions

of distributed systems are presented. Distributed Architectures, Process

Handling Algorithms, and Data Handling Algorithms are discussed and

evaluated. Conclusions are made in terms of management issues relevant to

distributed systems.

1. Centralized Versus Distributed Systems

Traditionally organizations have developed and implemented

automated support in a centralized environment. This allowed the software

efforts to be coordinated through one organization to ensure consistency,

standardization, and control. The central collection of data is better suited

to top management requirements. In general, the cost of communications

lines, hardware and support personnel is lower than that required for a

distributed processing environment. Contingency options for remote sites,

for example, do not cause major management concerns.

Many studies have shown that distributed processing and distributed

data are the most efficient and practical ways to process information in

terms of the future. A Distributing Computing Environment has been

21

defined as, "Any given set of computing systems, dispersed over a number

of physical locations, which can be logically interconnected to form a

harmonious and freely interacting computing environment." [Ref. 3] The

distributed environment tends to mold to an organization's divisions better

than a centralized one. The database and information processing, when

divided by organization, lends itself better to the daily operations. Each

division performs functions unique to that division. Data manipulated at the

division level is usually not changed at a different level. Therefore, locally

isolating data processing in an organization matches the distributed

functions of the organization.

Distributed processing tends to benefit the user's needs and realize

higher performance. The local databases are synchronized; there are no

time delays in updates for data in the local databases. The number of

application programs required for different geographic locations is

minimized. Only the programs used by the local users are needed.

Maintenance work by application programmers is reduced because the

applications can be more specific to a small group of users' needs. For

example, the applications in a centralized environment must meet all of the

users' needs, so the applications will be general in order to fulfill all of the

specifications. Often the application systems become very large, with a

large number of programs to meet each user's needs. If the application

programs are distributed, then only those required by the users at one site

22

would be located at that site. Application programmers are not required to

find solutions that suit all users' requirements.

Improvements in data accuracy and better job performance by quick

data collection and delivery are realized. Utilizing regional data enables

decreasing communication costs. Overall reliability is improved by

localizing system failures, and flexibility for upward scaling of database

systems is improved. A distributed environment should have "data location

transparency," that is, the applications are independent of the geographical

data distribution [Ref. 4).

2. Distributed Definitions

A major issue with system designers is defining a distributed

database. The concept is relatively new, and different organizations have

different definitions of what a distributed database means in their

organization.

Infodata of Falls Church, VA, has two definitions of a distributed

database. 1) Multilevel DBMS; the database and data are distributed to

satisfy local requirements, then integrated into corporate databases by

network interconnection. 2) Partitioned databases; there is no overlap in

the local databases. Each center holds segments of data and the data is

integrated by surveying segments [Ref. 5]. A Multilevel DBMS might be

used in an organization where different levels of management require

different amounts of data. A bank teller may require information on

individual accounts located at that bank location. The bank manager may

23

, , , i i I I I I

require some of the same information on a less detailed level. The regional

manager may require even less detailed information. There may be data

located at each level and shared by each level of management. On the

other hand, an organization where each division performs seperate and

unique functions and may operate with a partitioned database. There is no

need for data to be shared. Most organizations would use some

combination of the two methods.

Applied Data Research Inc., describes their view which allows

users to connect dispersed data into a single information source. It ties

together production data across mainframes, enables users to cross-reference

dynamically, provides full read and update support, replication, partitioning,

and transparent access to data at remote sites. The partitioning facility

segments the database and it is put in multiple systems. Data with high

availability requirements can be replicated in secondary or mirror image

copies at multiple locations. A two phase commit protocol ensures replicas

stay consistent with each other [Ref. 5].

Computer Corporation of America, Cambridge, MA, sees two

primary views: 1) With multiple copies of a DBMS on an IBM-type

mainframe, a single database can be broken up into pieces in many

locations, a partioned database. The system determines where relevant

portions of the database are located. An access plan is worked out to

retrieve data without user awareness of distributed data. There are multiple

copies of the database distributed among sites. 2) The system can support

24

the redundant data through items stored on multiple computers which are

updated automatically by the system. Loss of a machine does not block

access to the data [Ref. 5].

An organization must agree upon a definition of what "distributed"

will mean in their organization, especially in terms of data synchronization

and system availability. Characterizing a distributed system according to

particular attributes may help in determining the appropriate design of the

system. Some attributes, which are mentioned above, and may affect the

design of the system are: 1) division of labor in the organization, 2) level

of data synchronization required, 3) system and node availability

requirements, 4) machine failure contingency requirements, and 5) the level

of distributed processing required by the applications. By placing emphasis

on the appropriate attributes for a particular system, a common

understanding of the system may be defined. A common definition will

provide direction in terms of the system architecture, distributed algorithms,

and communication protocols to be used. These decisions will determine

the level of data synchronization and reactions to site or node failures.

B. EVALUATION OF DISTRIBUTED METHODS

The massive amount of research being conducted in the "distributed

database" field of study can cause confusion for users with limited

knowledge in this area. Research institutes, universities, and private

industry are all conducting research in slightly different areas of distributed

25

I L, ,, ,, ,,,,, ,

processing. Emphasis may be placed on hardware solutions, network

communications, multi-model solutions, mathematical algorithms, protocols,

or some combination of these areas to provide an accurate distributed

system to the user. The above solutions may be broken down even further

into more concentrated areas of research. The following section

concentrates on the mathematical algorithms which can be translated into

software solutions. These may be divided into the following areas: 1)

Distributed Architectures, 2) Process Handling Algorithms, and 3) Data

Handling Algorithms. Several distributed methods will be evaluated by

placing them in one of the above three categories; however, these divisions

are not clear cut. Some of the research efforts may cross into many of the

above "emphasis" areas. A user organization, in particular the Database

Administration personnel, must review these types of methods in order to

determine the best solution for their users in terms of the attributes of their

system.

1. Distributed Architectures

A common method of specifying a distributed system is in terms of

the architecture, or logical design, of the system. This is often done by

dividing the system into some type of logical "sections" that will each

manipulate the distributed system as defined by the organization. In other

words, an architecture may be partitioned into layers, functional modules, or

sub-networks. These logical layers may represent software or hardware

divisions or both.

26

a. Network-Oriented Operating System (NOS)

One such effort is the Network-Oriented Operating System

(NOS) described in [Ref. 6]. It was developed to promote resource sharing

among participating host computers, and to better manage distributed

communications. The NOS architecture was designed to coordinate parallel

processing among mainframes, especially those used for research in the

following areas: artificial intelligence, picture processing, scene analysis,

and speech understanding. These types of machines require special

peripheral devices such as analog to digital and digital to analog converters,

image scanners, graphics displays, and color TV displays. These types of

peripherals can devour a CPU's resources. The NOS was designed to

include time sharing job scheduling, multiple parallel programming

facilities, and the management of distributed databases to allow for parallel

processing features. The concept driving the development of NOS was to

provide an operating system designed exclusively for managing distributed

processing through the network communications. By isolating the primary

objectives of the operating system to meet these needs, a more efficient

system could be produced.

b. Network Access Processor (NAP)

The Software Configuration for the Network Access Processor

(NAP) is a different approach to managing a distributed system [Ref. 7].

The NAP contains program modules, named below, which perform the

following functions:

27

1) The Monitor Program: task control, interruption control, and 1/0

device control are common programs performed by the Monitor.

2) The Network Control Program: services commands to run

applications, controls interprocess communications, and performs

analysis of network communications.

3) The Virtual Circuit Control Program: performs packet level protocols

to provide virtual call services. The Virtual Circuit Control Program

interfaces with the Network Control Program for call "request" or

"terminate" signals, and interfaces with the Link Control Program for

"send" and "receive" signals. This level is the interface between the

logical mad physical layers of communications.

4) The Link Control Program: link access procedures are handled by the

Communication Control Unit hardware and the LCP. Unit hardware

performs flag generation, abortion, CRC check, and bit stuffing while

the LCP analyzes commands and responses and carries out error

recovery.

5) The Gateway Program: provides access services and protocol

conversion up to the packet level. Manages corresponding logical

channels to support the virtual call.

The layered structure of the software permits integration of new functions,

for example, a Distributed Database Directory Service or Graphics Interface.

This provides the logical communication facilities which interface to a

network and support communications between various computer systems.

28

The functions required for communications can be optimally distributed in

the network. The software configuration corresponds to the protocol of

each layer. Only the layers affected by the new functions are changed.

The system is not restricted to the original design.

c. In-House Configuration

An "in-house" configuration with distributed intelligence, is

described in [Ref. 8] as hierarchical levels of sub-networks which contain

four types of nodes: I/O stations, cluster controllers, sub-hosts, and hosts.

Figure 4 shows the architecture of the configuration. Level 1, the Serial

I/O Loop, connects the cluster controllers and I/O stations and

communicates in a master/slave relationship. Level 2, the Data Highway,

interconnects the host, sub-hosts, and cluster controllers and uses peer

coupling to communicate.

As nodes become more intelligent, for example microprocessors

and memory in I/O stations, then the host, sub-host, and cluster controllers

are released from dedicated I/O control functions. Dividing die network

into tie two logical levels provides the following benefits: divides the fast

and slow data transmissions, clusters nodes based on acess frequency, and

divides the communication relationships. The features of the Serial I/O loop

are that it provides easy attachment of new types of I/O stations, and easy

addition or removal of stations. The Data Highway can provide high speed

communication between its nodes, and make efficient use of distributed

software and hardware resources. Limiting the communications

29

IS I I i i

SLIP Communication
Net of k

Figure 4 Levels of Architecture

requirements to a small geographic area allows emphasis on high-speed

communciations, a variety of communication means, and new

communication techniques. T-he configuration was implemented and tested

at Fujitsu laboratories in Kawasaki, Japan. This architecture provides

excellent performance while being constructed economically, and Local

Area Networks use this methodology.

d. Distributed System Environment

Honeywell developed a Distributed System Environment, [Ref.

91, to support a wide range of configurations, interconnect different types of

equipment, and provide transparency of the network environment to the

application programmer and user. They defined a network architectuie as

30

"a set of rules defining modularity, interfaces, and protocols by which

functions communicate." The architecture must be compatible at all levels.

The System Level defines relationships among components, while the

Lower Level pertains to hardware/software features of particular equipment.

System Level functions are administrative in nature and may be static or

dynamic. Some typical control functions, which may be centralized or

distributed are data base administration, monitoring and control of data

communication networks, and the control of application development.

The Lower Level architectures include:

1) Information Processing: application related, performs functions

normally executed by a general purpose computer.

2) Network Processing: provides control of data communication facilities.

3) Data base Management: control of data structures, access to stored

data that form the data base.

With this architecture, functions can be selectively centralized or distributed.

For example, central monitoring of status of equipment and communication

facilities allows failures to be resolved from a central location.

e. SHARD

A final architecture to be reviewed in detail is SHARD: A

System for Highly Available Replicated Data. SHARD is designed to

support continued database operation in the face of communication failures

and network partitions [Ref. 10]. SHARD uses timestamp-ordering to

ensure eventual mutual consistency. Robust update, propagation protocol,

31

and mutual consistency mechanisms were developed to realize mutual

consistency. Application-specific actions are triggered in the event of an

inconsistency. %

Replication of data allows greater availability in a distributed

system, since sites may allow continued processing if one site fails. The

requirement for multiple copies requires maintaining transaction

serializability and consistency of the copies. SHARD permits users to

continue accessing the system during a partition and updates are processed

correctly after the partition is corrected. The application

reads the "best data" at that time, updates are queued for transmission to

other sites, and executed against local copies of the database at that site.

A reliable broadcast protocol ensures delivery of all updates to

all sites within system. Site failures and Network Partitions cause delays in

propagating updates, and different sites see the same updates in a different

order. SHARD guarantees that all sites eventually will have the same

database in spite of different orders for updates at different sites, by use of

system-wide timestamps.

Traditional concurrency control resolves tradeoffs between

different parts of the application database, depending on whether

consistency or availability is more critical. SHARD is designed specifically

to handle problems of partitioned networks, and the algorithms assume

failures can occur at any time. When sites cannot communicate, one hopes

the other has either failed or will not do anything that conflicts with the

32

site. If other sites did perform conflicting actions, the application takes

appropriate steps to resolve the inconsistency.

A site is continually reconciling its database copy with new

information arriving from other sites. There is never a need to detect a

partition or reconnection or for sites to agree on who is in communication.

This is important because it can be computationally expensive to do these

things.

The System Design and Implementation are described in terms

of the model of the database interaction and the system architecture.

1) Model of Database Interaction: SHARD maintains a database of state

information and an application runs interactions against tius database.

Behavior of updates is more restrictive than the conventional model of

transactions. An update can't perform input, output, or return

information. Queries are not serializable with respect to all updates,

but rather they see some subset of the total order defined for the

updates. SHARD supports conditional updates which read

information from the database state to determine how the database

state changes. The effects of a given update will be known

completely only when all preceding updates in the serialization order

are known and have been executed.

2) System Architecture: "True" data is defined as the history of updates

executed. Each site carries both an update history and a current view.

Each site has a logical clock to assign unique update timestamps that

33

define total ordering. Each site contains three software modules

which clearly divide responsibility: the Interactor, the Distributor, and

the Checker:

a) The Interactor presents data to the users and accepts updates.

b) The Distributor implements a reliable broadcast protocol to

ensure that all sites eventually see all updates.

c) The Checker installs updates in the database and ensures

mutual consistency using log transformations.

The transaction history and databases are located on stable secondary

storage.

The configuration for the SHARD Prototype included a

maximum of six sites. Larger configurations would benefit from work in

these areas: partition replication, some notion of "priority" so when

resources are limited the most important information is transmitted and

processed first, an improved distributor process structure, and mechanisms

to allow sites to be added and removed dynamically.

SHARD's systematic approach to achieving high database

availability in spite of failures allows continued access to and updates of

data. The system accepts some risk of non-serializable transaction

execution. SHARD replaces the guarantee of strict consistency by an

"eventual" consistency guarantee achieved with a combination of timestamp

ordering and application's compensation mechanisms. SHARD's new

features include support for database updates that are more complex such as

34

increment and conditional updates, and update propagation which takes

advantage of intermediate sites. Shard allows an application to selectively

trade off consistency and availability with the use of concurrency protocols.

By allowing these protocols to be unblocked after an application specified

amount of time, SHARD achieves a desired balance between the timeliness

of response and the probability of inconsistency.

f Distributed Architecture Layers

Distributed Architectures concentrate on the logical design of

the system. In general, the systems are divided into layers or modules

which are responsible for unique functions as defined by the system. The

communication between the levels or partitions is critical to the success of

the Distributed Architectures. The concept is not complicated for the

Database Administrator to manipulate, since different functions are

performed at different levels and changes can be isolated. The more

difficult task is choosing an architecture appropriate for the system.

2. Process Handling Algorithms

The algorithms discussed in this section manipulate processes

within a distributed system. The software resulting from this type of

research operates on a system level and manages the scheduling of

processes. The algorithms require an in depth evaluation of the application

processes to be run on the distributed system. Once a complete

understanding of the processes is gained, applying one of these systems will

allow distributed processing without scheduling conflicts.

35

a. Specificaion of Time Dependencies

One such process handling algorithm was developed by Peter

Ladkin, "Specification of Time Dependencies and Synthesis of Concurrent

Processes," [Ref. 11]. This system uses interval calculus as a base to give

very high level specifications of concurrent process protocols. These

specifications are translated into a specification language, Concurrent

REFINE, which allows identification of critical sections in the processes.

Specification of time dependencies by means of intervals of time allows

representation of process execution in a multiprogramming context. Interval

calculus uses notions of duration and diameter for time intervals, so it is

suitable for specifying real-time systems.

The simple case of specifying a time dependency is that in

which a job retains control of the CPU until it terminates. All interrupts

are disabled, and the job runs over a continuous period of time, a convex

interval. In order to run several jobs on a single CPU at once, context

switching of the processes is required. In such a case, interrupts must be

enabled and there is no limit on the maximum number of jobs, requesting

the CPU.

The Synthesis of Concurrent Process Specifications process

produces executable synchronization skeletons for large mutual exclusion

problems. Synchronization skeletons include statements incorporating

synchronization primitives and assertions to be maintained as true during

execution.

36

Refinement of the Specification is completed using Concurrent

REFINE, and some constructs from a time system, TUS, a natural system of

time units. REFINE allows combined specifications to be compiled. The

refinement technique was developed to show how very high level

specifications of concurrent systems are transformed into specifications

accommodated in the existing system.

The general strategy is to identify critical sections and

assertions for the "guard predicates," and to assemble synchronization

primitives into the skeleton for processing. The technique involves the

following steps:

1) Introduce auxiliary predicates.

2) Construct a set of process executions with which a process is

mutually exclusive.

3) Formally decompose critical sections into "request" and "execute"

parts.

4) Construct conditions which assert that "a guard predicate is true only

when it is safe to execute", and

5) Order the guarded statements within the calling process.

If two processes may not run concurrently, they are specified as disjoint

from each other. Critical sections may be identified by constructing for

each procedure the set of processes disjoint from it.

The refinement process demonstrates automatic identification of

critical sections, automatic ordering of synchronized primitives within

37

processes, and formalization in the interval calculus. One of the limitations

of this methodology is that one cannot reduce all synchronization problems

by this process, in particular those which are recursively undecidable.

Interval calculus is a powerful tool for the specification and refinement

of concurrent process configurations. Unions of Convex Intervals Calculus

is expressive, allowing flexible, extensible specifications of time

dependencies.

b. Distributed Scheduling

Another version of a Process Handling Algorithm is called

"Distributed Scheduling Using Bidding and Focused Addressing." [Ref. 12]

This algorithm concentrates on scheduling problems in real-time computer

systems by finding available nodes to run processes. It uses a heuristic

distributed method to schedule tasks, while considering both tasks with

deadlines and task resource requirements. The algorithm is a flexible

scheduling algorithm for loosely coupled distributed systems.

The system model that was developed contained three major

components: resources, tasks, and nodes. The resources are active if they

have processing power, passive if they don't. Tasks have characteristics

attached to them which include: worst case computation time, a deadline,

and resource requirements. At each node, there is a scheduling component

which has: 1) a local scheduler which decides if a node can guarantee a

task, 2) a bidder where an unguaranteed task is sent to and combines

bidding and focused addressing to find a new node to schedule the task, 3)

38

a dispatcher which actually schedules the guaranteed tasks, and 4) a node

surplus manager which periodically calculates node surplus.

There is a scheduling scheme which coordinates the scleduling

steps in the system. The first step is to invoke the local scheduler to try to

guarantee the new task. If it can be guaranteed, it is put into that node's

schedule; otherwise it is sent to a bidder. The next step is to use focused

addressing to select a focused node with sufficient surplus. Focused

addressing estimates surplus of the nodes based on partial knowledge about

the other nodes in the system. If there is a node with sufficient surplus, it

is a focused node, and the task is guaranteed. If bidding is required, a

request for bid message is sent to a subset of other nodes. The nodes

receive the request for bid and calculate the bid. Results are sent either to

the focused node or the original node. When the task is sent to the focused

node, it invokes the local scheduler. If the node can accommodate the task,

then the bids are ignored; otherwise the best bid is selected. If there is no

focused node, then the original sends the task to the best bidder. A task

cannot be guaranteed if there is no focused node and no best bidder.

The scheduling tasks required by a node are as follows: the

scheduling component guarantees the task, and a new schedule is created,

the new schedule replaces the old one and determines a start time, and if

the task is not guaranteed then the schedule is not changed.

A heuristic function determines a feasible schedule for placing

a task in a schedule. Distributed scheduling occurs when a task is not

39

guaranteed in the first node. Node surplus is computed. State information

is used to help other nodes decide scheduling. An approximation of the

node state is made to guarantee a task. The surplus is periodically

calculated, sorted and stored in another node.

An evaluation of the algorithm, using a simulation model, was

done. Six nodes were in the model. Each node had five resources, two

active, three passive, and there was one periodic task per node. In the

simulation results, the algorithm performed at an almost optimal rate.

Determining a perfect schedule for real-time task scheduling is

impractical. A heuristic approach to perform on-line scheduling of tasks is

needed. Heuristic functions determine a schedule for tasks executing on a

node. Nodes cooperate through a combination of bidding and focused

addressing. Despite communication overhead, the algorithm performs close

to one with perfect state information.

c. Task Response Time Model

A distributed method which handles its processes in terms of

task response time uses a control-flow graph to represent the logical

structure and relationships among modules. "Task Response Time Model

and its Applications for Real-Time Distributed Processing Systems," [Ref.

13], introduces an analytical model to estimate task response time for

loosely coupled systems. Application tasks are partitioned into several sub-

tasks assigned to a set of processors for processing. Upon completion of a

task, a module sends messages to enable the next modules to execute. It

40

may also send messages to update shared data files. Modules may interact

on the same system, intermodule communication (IMC), or between

different computers, interprocessor communications (IPC). It is the

interprocessor communications that require extra processing such as

communication protocols, management of distributed data files, and network

delays.

Distributed systems require better solutions to overhead caused

by modules on different computers sharing data. This is complicated by

design issues such as module and file assignment, scheduling policy, and

database management algorithms. Existing systems have used the trial and

error approach, so a systematic methodology for designing distributed

systems is required. Therefore, the development of an analytical model to

estimate response time which can be used for exploring design issues has

been completed.

A common model of a distributed system is represented by a

queuing network with servers, customers, and arrivals. A FORK represents a

module which enables more than one module. When there are several

modules which must complete execution before a succeeding module is

executed, the situation is referred to as a JOIN. The routing scheme in a

queuing network is inadequate to represent these logical relationships (ie:

FORK and JOIN), and so a specific "Task Response Time" model has been

designed. The model contains two submodels: "Module Response Time

41

Model" and "Weighted Control-flow Graph Model" which are used to

represent the algorithm.

The Module Response Time Model estimates the response time

of each module in a system. The response time extends from the time of

invocation to the completion of execution. It includes waiting time,

execution time, output IPC time, and input 1PC time. Each computer (or

processor) can be considered a separate queuing system. If several modules

are being invoked, it is called "bulk module invocation." Module arrivals

in the system are independent of each other and interarrival times are

Poisson distributed. Bulk invocation modules are invoked at the same time

and the operating system schedules an execution sequence based on

resource requirements of the modules. So, the average response time for a

module is the average module bulk waiting time and the sum of execution

times of the individual modules.

The Weighted Control-Flow Graph represents the intermodule

relationships and the module response times combined. The response times

are mapped onto the control-flow graph as arc weights. The task response

time can be estimated from this model.

Control-flow subgraphs can be of four types: sequential thread,

And-Fork to And-Join, Or-Fork to Or-Join, and loop. These are basic

logical relationships, and there may be one or more of these subgraphs

contained in a task control-flow graph. A sequential thread is a series of

modules where each module has a single successor. The total response

42

time is the sum of all arc weights. An And-Fork to And-Join subgraph

represents a module which simultaneously enables several modules, all

modules complete execution, and a final module is enabled. The response

time of the subgraph is the maximum time of the individual modules' paths.

The Or-Fork to Or-Join module enables one of its succeeding modules

based on some branching logic. The response time is the weighted

response time of all threads. A loop subgraph represents a process of

repeatedly invoking a set of modules. The response time is the average

number of times a loop is executed multiplied by the time required to

execute a single loop.

A generalized model is introduced to compute response times

for dependent module invocations. The graph is partitioned so that the

modules of each subgraph are allocated to the same computer. The

invocation of the modules are dependent on each other, and the

dependencies at forks and joins complicates the model. This approach

provides more accurate response time when modules form a long sequential

thread.

The Task Response Time Model can be used to study the

effect of response time on issues such as module assignment and

precedence relationships, scheduling disciplines, and database management

algorithms. Distributed systems require protocols to ensure internal and

mutual data consistency for simultaneous access of replicated data files.

43

The results of using the model provide insight to performance and overhead

of concurrency control algorithms.

The approach of this model considers queuing effects,

interconnection network delays and logical relationships and therefore

provides accurate time predictions. It can be used to study the module

assignment problem and the effect of precedence relationships among

modules. In addition, it can be used to study design issues such as module

scheduling policy and database management algorithms. The model serves

as a valuable tool for systematic planning and designing of distributed

processing systems.

d. Evaluation of Process Handling Algorithms

Process Handling Algorithms are designed to concentrate on

efficient processing in a distributed system. Each of the above algorithms

could be used in a different type of distributed system. For example, the

first method, Specification of Time Dependencies, is suited for a system

that contains processes that depend on other processes, or a tightly coupled

distributed system. The Distributed Scheduling algorithm, designed for a

loosely coupled machine, is geared toward systems where the processes are

competing for resources but are not dependent upon each other. This

algorithm might be used in a system where there are many independent

processes running, and some of the processors are overloaded. The final

algorithm, the Task Response Time Model, might be used where response

time is of utmost importance, for example a weapons system or navigation

44

system. Depending on the type of processing in a distributed system, an

appropriate processing algorithm can be selected.

3. Data Handling Algorithms

A major consideration in a distributed system is the data handling

procedures. The increasing amount of automated information processing

will produce databases that exceed the physical limitations of centralized

systems. Algorithms can be designed to efficiently manage the distribution

of data in the system. It is important to first determine priorities in terms

of data synchronization and integrity, communications delays, and .:-sponse

time.

Peter Apers presents an algorithm in "Data Allocation in

Distributed Database Systems," [Ref. 14] which provides a solution to

allocating data to sites in a distributed database system. His view is that

allocating data in the "distributed file problem" is not the same as in a

distributed database. Data access is more complicated. A relation may be

split, either horizontally and grouped by tuples, or vertically and grouped by

attributes. If resulting fragments are located at different sites, then the

database is "partitioned." If copies of relations are placed at several sites,

the database is "replicated." These features of a distributed database,

partitioning and replication, can present both benefits and problems that do

not exist in a centralized processing system.

A typical problem with distributed query processing is that some

algorithms require the DBMS to supply the fragments and ensure a

45

consistent view of the database is being provided. Another problem is

determining processing schedules. Parallel processing and computation

should be factors in an algorithm which determines schedules for queries

where a certain cost function is minimized. If a query requires a "join" or

a "fork", the algorithm must know something about the execution in order

to correctly represent it.

The cost of an allocation is computed by a processing schedules

graph. A graph is constructed with 1) Physical site and virtual site nodes,

2) Edges that represent transmissions of the processing schedules, and 3)

the operations of the processing schedules to the operations sets of the sites.

The graph contains information necessary to check constraints such as

bandwidth, CPU-utilization, and node availability to determine the cost of

queries and updates. The goal is to obtain a completely specified allocation

by manipulating partially specified allocations such that a given cost

function is minimized. Cost functions can be minimized by utilizing

parallel computations. The forking process is used to start a parallel

computation. The forking graph is a subset of a processing schedule graph.

A good heuristic to minimize response time is to allow for as much

parallelism as possible. Relations are split into fragments based on user

queries, and further splitting horizontally will enhance parallelism.

The costs of many different allocations must be compared to

compute optimal allocations. Static processing schedules avoid recomputing

schedules by starting with an initial allocation and adjusting the graph. An

46

initial allocation is, for each query and update, a copy of a fragment created

and placed in its own virtual site. Schedules are then computed and placed

in the graph.

Techniques such as branch-and-bound or heuristics are used to

search the large solution space for determining data allocations to minimize

total transmission cost. These techniques construct decision trees. A node

is identified by the path from the root to that node. The edge corresponds

to a decision taken about data allocation. A subset, belonging to a leaf,

contains all completely specified allocations that satisfy the partially

specified allocations defined by decisions taken to reach that leaf. The cost

of a subset is the minimum cost among all solutions in the subset. The

cost-estimator is the sum of two components: 1) the cost caused by

decisions to reach the partially specified allocation from the initial

allocation, and 2) the estimate of cost caused by decisions that still have to

be taken to reach a completely specified allocation with the least cost.

The algorithm is as follows. For each iteration, a leaf with the

smallest cost estimator is expanded. Expanding a leaf means unite one of

the virtual sites with each of the physical sites. Continue until a leaf with a

subset which contains only one completely specified allocation is chosen as

the result.

The cost estimator of a subset underestimates the cost of the subset.

Otherwise the search deteriorates into an exhaustive search. If each virtual

47

site is connected with only one physical site, the cost estimator could be

determined based on transmissions between physical sites.

A Heuristic Data Allocation algorithm was evaluated and proceeds

as follows: start from an initial solution and locally optimize until no

improvements are possible. When several are possible, the one that

decreases the cost function most is chosen. Algorithms using this technique

are called greedy.

The above tools may be used by one or a group of database

administrators. The algorithms can be applied to centralized data allocation

or distributed allocation. In Centralized Data allocation, allocation of all the

data is considered at the same time. If either one data base administrator or

one central data base management system is allowed to change the existing

allocation, then the system is considered centralized. All queries or updates

are used to determine fragments and to compute a completely specified

allocation that minimizes a particular cost function. Algorithms can be used

for minimizing total transmission cost. The allocation obtained will be

implemented by the data base administrator who can dictate an allocation to

local data base management systems.

Decentralized, or Distributed, Data Allocation exists when data is

owned by different data base administrators, or the distributed database is a

collection of databases owned by different parties. No central organization

exists that dictates the allocation of data. Therefore the database

management systems of the sites should cooperate with each other and try

48

to determine an optimal allocation of data required by users at their sites.

Users at a site who share the same view of data can request their local

system change the allocation to minimize a certain cost function. An

advantage is the natural partition of the general data allocation problem into

a number of smaller ones, solved more easily. Another advantage is that

data allocation can change more or less continuously through time. If

access patterns change, the database administrator at that site simply

determines a new allocation for them. The overall cost of the decentralized

approach may be higher because only smaller portions of the scheduling

graph are considered at a time.

This model was introduced to compute the cost of allocations for

various cost functions. It is suitable in both branch-and-bound and heuristic

algorithms. A method for determining ueit allocation by splitting relations

in the conceptual schema base on queries and updates is presented. A

framework was discussed for managing allocations in a distributed database

with one or more database administrators.

This type of algorithm would be ideal in a large distributed system

where each of the sites requires data from most of, or all of, the other sites.

For example, an inventory control database system, where many parts were

supplied by many manufacturers, and these parts were distributed to

locations in many different areas. If no consideration is given to the data

allocation, eventually there will be very limited communications between

49

sites. The network communication would be overloaded trying to transfer

tuples to all sites on each occurrence of an update.

C. CONCLUSIONS

Each of the distributed methods described in this chapter approaches the

distributed processing, or distributed database management problems, from a

slightly different angle. The distributed architectures view the system from

a logical or organizational point of view. It is necessary to define the roles

that will take place in the management of the data and processes. The

responsibility of these roles must also be divided and assigned to the

appropriate modules or layers defined by the architecture.

1. Management Issues

The success of a distributed system involves not only the

configuration of the software and hardware of the system, but also on

appropriate management techniques in the emphasis on appropriate issues

such as performance and integration.

a. PerformancA Tuning

The lowest levels of management in a distributed system are

the process and data handling routines. Some type of organization and

systematic approach is required in order to efficiently operate a distributed

system. These are the algorithms which must closely match the user

organization's needs. These algorithms can be and should be tuned as the

system is being used in order to meet changing requirements.

50

b. Integration

A primary problem in today's distributed environments is to

connect the variety of equipment from different vendors. Equipment

provided by one vendor doesn't understand the management protocol used

by another vendor. Neither reports operational or status information in the

same way.

Some vendors offer management capabilities with hardware, or

provide software to tie it all together, but some organizations cannot always

take the single source route. Common carriers do not offer freedom of

choice. Independent carriers do not provide adequate coordination for

customers' service. Communication standards are lacking for the micro-to-

mainframe world, although Open Systems Integration (OSI) is helping clear

this sore spot. Network Management requires good communication and

coordinated efforts between staff, users, and nontechnical management.

Effective network management combines people, philosophy, and

technology. New network monitoring services are being offered to

companies which are all encompassing and include such efforts as: isolating

problems, rerouting traffic around failures, and informing affected vendors

and carriers.

The OSI efforts are ongoing, and a working group met in

Tokyo to refine network management standards [Ref. 15]. This includes

standards of all resources, including hosts, in a mixed vendor setting. OSI

standards are hierarchical in nature and were developed in a top-down

51

manner. OSI is strictly concerned with interconnection between systems

that allow exchange of management information between remote devices

and centralized operations staff. Specific standards apply to the five areas

of management defined as: 1) configuration, 2) fault handling, 3) security,

4) performance, and 5) accounting. This model of management, OSI, is

meant to bridge the gap between abstract standards and the real world of

customer needs. OSI allows independence from vendors, and will

eventually enable networks to be easily tied together.

2. NMPC Requirements

If NMPC evolves to a distributed environment using workstations,

the primary concern will not be data synchronization. In general, the

detailers have their own personnel, or constituents, to work with and assign

to duty stations, and currently work with their own "personal database."

Likewise, the placement officers work with their own activities, and use the

information in the activity database which concerns their activities. If they

have a need to see other information, it is not to make changes but merely

to view the data. This viewing data can be updated in the master files

nightly from each of the workstations. Failure of one workstation would

affect no other users. That one user would merely need to find another

operating workstation to use.

Training reservations, on the other hand, would require on-line

updates throughout the distributed system, especially when there are

detailers competing for use of those seats. Therefore, some type of

52

communication algorithm will need to be set up to coordinate the sharing of

this data. A close evaluation of the data should be done in order to

determine the data which must be synchronized. For example, the training

data may be partitioned based on the kind of training. Each location may

have one node responsible for allocating its seats.

The primary concern will be process handling especially at the

beginning and end of each workday. As users log on, the central machines

will be very busy downloading to the user his portion of the database, or

the data he requires to do his job. At the completion of each workday,

users are logging off of their workstations and uploading their databases

back to the centralized databases. The processors of the machines will be

very busy at these times of day, and efficient process handling routines will

be necessary. The processing throughout the night will involve reconciling

the updated copies of the data with the master databases. Jobs are run that

create output to a variety of different organizations. These jobs must be

evaluated to utilize the maximum potential of the CPUs. Currently the

scheduling of the jobs takes most of the night; however, only about 20% of

the CPU is being utilized, [Ref. 16]. Therefore, it is apparent that parallel

execution of the jobs is required to prevent an eventual system backlog.

53

IV. OBJECT-ORIENTED DBMSs

A. INTRODUCTION

Resistance to change has been a major problem over the centuries for

those few pioneers willing to explore the unknown. It is human nature to

remain in a state in which we are comfortable, and when we try to

introduce new "foreign" ideas there is often great opposition. This is the

case with some of the advanced programming language concepts now being

researched. Many programmers who are comfortable in their niches using

COBOL, FORTRAN, Pascal, C and other traditional languages are

unwilling to explore the unbounded possibilities available to them through

concepts such as object-oriented programming.

In the academic world, people tend to desire searching out the

unknown. However, this is unfortunately the exception rather than the rule.

As the world of computers advances with each day, the members of that

world, hardware and software, must also advance to keep in step. In the

past 20 years, this has not been the case. Computer hardware designs have

grown quickly so that size and speed improvements are barely implemented

before new designs have been completed. Unfortunately, software design

improvements show a slow start next to their hardware counterparts. End

users are expecting more solutions and faster computers. Eventually, there

54

will be a limit reached for the hardware improvements. There will be two

directions to go once this limit is reached: 1) parallel (distributed)

architectures, and 2) better software.

A primary area of interest in the research community is object-oriented

programming. The concept of object-oriented programming is to define all

items in the construction of a program as objects. An object controls some

local data, which can be manipulated from the outside only via the methods

defined by the object. When an object receives a message, which requests

some service and contains any needed input data, the object selects a

method to provide that service. As more objects are defined, the level of

abstraction through which the program is being viewed becomes higher,

because the new objects are defined in terms of lower level objects. So the

software gets closer to the level of specification and therefore closer to the

statement of the problem. Programs should then be easier to understand

and more correct. The software can be reused, because each object is a

separate and complete entity of software. This encapsulation of code

allows programs to be developed quickly because. the tedious details have

already been dealt with and solved. Objects can be put together to form

larger objects. Brad J. Cox compares object-oriented programming to "Eli

Whitney's interchangeable part innovation." Both redefine the unit of

modularity and allow the production of subcomponents. The

subcomponents may be controlled by standards and can be interchanged

across different products. Subcomponents of software programs have been

55

termed "Software Integrated Circuits" or just "Software lCs" to emphasize

the similarity to their hardware counterparts [Ref. 17]. These software ICs

can be placed in or removed from programs as the developer sees fit on

any machine. The hardware that the programs run on is immaterial,

because the ICs are fully portable; they are designed to perform specific

functions. In the face of an everchanging world, flexibility is a key factor.

The ability to reuse objects that have already been developed allows

programmers to continue to build upon previously completed work. In

general, object-oriented languages are not difficult to learn; they tend to be

relatively simple. Programmers can build to higher levels of abstraction

quickly. Learning the numerous "Software ICs" already present in the

object library in SmalITalk-80, for example, may be more intensive than

for a traditional programming language. However, it is exactly this use of

the object library that makes the object orientated programming method so

valuable [Ref. 17].

Building programs at a higher level of abstraction, using the object

library, produces better programs. The programmer can become more

concerned with the higher level logical problems and not worry about errors

caused through performing the menial tasks. It is quite often the case that a

programmer spends hours debugging a program just to find a very simple

mistake, say a missing definition, that was causing some very major

problems. The use of Software ICs in object-oriented programming can

reduce this type of problem while allowing the programmer to concentrate

56

on higher level issues. The benefits provided by object-oriented

programming can easily be transferred into object-oriented database

management systems.

Encapsulation is realized by a collection of compartmentalized objects

that communicate only by sending messages. The objects act as "black

boxes" of code, and the implementation inside the box is restricted from the

user's view. The methods used in accessing objects allow manipulation of

data before tfie user sees it. The object determines the method used to

access the data based on the message received. In an object-oriented

database, the user does not need to be concerned with the access method an

object may use to produce the desired information. The object selects the

appropriate method based on the query. There is no need for an end-user

to learn a language specific to a database model, like a relational query

language.

B. FEATURES OF OBJECT-ORIENTED DBMSs

The features of object-oriented database management systems provide

new and useful tools to the database environment. The use of message

passing and data manipulation within an object allow processing to occur

out of sight from the user. The processing is prompted by the message

input received by an object. This provides automatic triggering capabilities

within an object-oriented environment. Such a feature can produce some

very useful applications. For example, in the context of a the Naval

57

Military Personnel Distribution System, if certain actions are completed, like

the approval of a set of orders, then a follow-on action, the costing of those

orders, may be automatically triggered. However, objects are designed with

a series of methods, or actions, to perform depending upon the input

received; so if the orders were disapproved, the set of orders may fall into a

separate class of objects, and a completely different set of actions may be

triggered by the object. If the orders were approved, then upon completion

of the costing, the writing of the orders may be automatically triggered.

These steps would not require input from the user, and so would free the

user to perform other activities. In a conventional database management

system input from the user is used to start each process. Implementing

features such as the above in a traditional database management system may

require a multitude of "case" statements or conditional statements. Such

features would severely strain most DBMSs on the market today.

Concurrency and distributed systems are additional features of object-

oriented programming that provide new tools. Objects can run concurrently.

They communicate by passing messages and are like independent automata

working in parallel and providing data where needed. The concurrency in

object-oriented systems can provide such features as tracking software

design history or version control. In many design and engineering

applications, it is necessary to keep track of the development history. A

development history often consists of a branching set of development paths,

where each development path consists of a sequence of compatible

58

refinements. Branches appear in cases where alternative designs were

considered or different configurations of a product were developed for

different customers. Similar structures appear in planning activities and

"what-if' analyses in systems modeling or games theory.

In object-oriented database systems, generic methods for version control

can be provided as methods for a generic class "VersionControlEntity".

These methods can be inherited in any application schema simply by

declaring the classes of application objects needing version control as

subclasses of the general object class "VersionControlledEntity". This has

several advantages:

1) The version control code can be defined once and used many times,

2) The overhead of a version control mechanism is incurred only for

those object types that need it, under tie control of the application

schema defined.

3) Improvements in data structures and algorithms for version control

can be made by the system administrator without affecting any of the

application schemas or programs.

The object-oriented concept is very similar to the concept of distributed

processing, defined as many machines working independently and

communicating data needed through interfaces. The design of distributed

systems becomes easier to define because the design is similar to the design

in an object-oriented environment. The level of abstraction in the database

management system is close to the architecture of the system, and higher

59

level solutions can be designed which are closer to the specifications of the

actual problem.

Extensibility is a feature of object-oriented programming that is not

easily represented by traditional systems. The ability to define new

extensions in a database that do not fall under the traditional data

processing categories can be a difficult task. Recursive definitions and

recursive query processing are not features found in traditional database

models. The ability to define a set based on a subset is a natural

representation in an object-oriented database. Recursive processing and

specialized access patterns can be realized using the methods associated

with objects. A common data structure is a graph consisting of nodes and

edges. "Traverse the edges to find the shortest path" might be a typical

query on this type of data structure. Object-oriented database features allow

this to occur naturally, as objects may easily search their sub-components

for the shortest path, and so on recursively. It is possible to define a graph

in, say, a relational database model. However, edges and nodes may be

spread in tuples across the system. The query may require some extensive

database operations in order to gather the data required to solve the problem

which are difficult or impossible to express in conventional database query

languages. Applications which are recursive in nature can be easily

specified in an object-oriented database [Ref. 18], and specialized data

representations can be defined to make them more efficient.

60

The ability to reuse software in object-oriented databases is very similar

to the use of "packages" in Ada. Packages can be defined in generic terms,

and then be reused by a variety of more specific applications by creating

instances with different values for the generic parameters. The primary

difference between the concepts is that object-oriented systems allow the

run time binding of data types, based upon the message received, and so

can work with loosely coupled collections that hold objects of different

types. Object orientation allows defining new types at run time by reusing

some existing type. Ada expects binding to a data type at compile time.

Ada was designed as a strongly typed language for use with embedded real-

time systems [Ref. 17]. The ability to define generic or parameterized

object classes is essential for an object-oriented database system to realize

the full benefits of code reusability. This allows generic standard object

classes to be tailored to particular applications by supplying particular

values for parameters and then inheriting the tailored facilities in particular

applications. For example, a generic class can provide a general purpose

method for displaying a structure chart, where the relation defining the

structure, the procedure for extracting the label from each node, and the

shape of the icon used in the display are generic parameters. Such a

method can be instantiated in different ways, for example to display the

subcomponent hierarchy of a mechanical assembly, or the uses relation for

the modules in a software design, or an organization chart for a corporation.

61

Specific solutions can be developed using traditional databases and the

results are very specific applications. General models and solutions are not

enough to solve more complicated problems, but specific solutions are not

able to be reused by other applications. The ability to parameterize generic

solutions allows them to be adapted to specific situations.

Another important feature provided by object-oriented database systems

is the ability to add new data types to the system. Geographic, spatial, or

temporal representations of data types may be defined by defining new

object classes in an object-orientated system. These are data types not

supported by traditional database systems. For example, the three

dimensional representation of a geographic area on a radar system may not

be easily represented in a relational DBMS. Determining positions in that

geographic space would require extensive computations. Then,

representation of the data values would be converted to some form the end-

user could understand. An object-oriented database, on the other hand, can

send such a request to the objects it contains, and the object can determine

methods required to produce the results to the user. The concepts are

represented as objects within the geographic object class. Concern with the

appropriate numeric processing, for display purposes would have already

been resolved when the lower level objects had been defined. This feature

allows a database to expand beyond the usual capabilities available.

The object-oriented database can treat different relations as specialized

classes of relation objects. This would allow efficient support for

62

specialized features such as security, performance, and specialized methods.

An object may select the portion of the database that a certain user is

allowed to see. This automatic partitioning of the database makes data

security issues easier to address. Similarly, an object may also choose a

specific implementation of an application. By allowing the objects to

choose the implementation, a more efficient version or more specialized

version may be chosen depending on the needs of the user. Specialized

methods may be made available only to those requests with authority to do

so. The object may choose the appropriate method for those requests with

access, and execute them. These methods may have been designed for a

certain group of users.

C. EVALUATION OF OBJECT-ORIENTED SYSTEMS

In this section, an existing object-oriented database management system,

PROBE, is discussed. The research supporting PROBE is being conducted

by a division of Computer Corporation of America which is now owned by

Xerox. An algorithm for determining unique identifiers for objects in a

distributed system is also discussed.

1. PROBE: An Object-Oriented, Extensible Database System

Support of spatial or temporal data processing is difficult, since

each application has its own notion of space and time. The approach in

PROBE is to define a mathematical abstraction of spatial and temporal

objects. PROBE provides built-in support for the general concepts, so

63

different types of applications can be mixed. Recursive queries occur

naturally in some problems. Adding general recursion to a query language

which does not support recursion is very difficult. PROBE supports

traversal recursion and self referencing queries through its support of

recursive definitions in the object-oriented database.

Most database systems do not provide facilities for extensions to their

systems code. PROBE supports extensibility. Major components of the

system are: 1) The Database System Kernel: a query processor designed to

manipulate objects of arbitrary types, and 2) A Collection of abstract data

types or object classes: these classes specify the representation of objects of

a new type and provide operations to manipulate them. It is necessary to

specify the division of labor between the database kernel and object classes.

The kernel should handle sets of generic objects. The object classes should

handle individual objects of specialized types. The Application Specialists

supply the object classes and will not have to consider database system

implementation issues. The Database Implementors deal with the interface

between system and object classes, and will not have to consider application

specific issues [Ref. 19].

Extensibility is supported with the notion of generalization. At the root

is the most &'neral type, ENTITY, and from the root object types with

more specific semantics are defined. These object types are defined in

terms of the object, or entity, previously defined. For example, Body-of-

Water may be a type of ENTITY. The user has defined an object of type

64

Body-of-Water. Other objects may be defined in terms of Body-of-Water.

Lake, Pond and Ocean may be examples of objects belonging to the Body-

of-Water class. A query, ChemicalBreakdown may be submitted, and

depending on the class of type Body-Of-Water, the object selects the

appropriate method to produce the results of a chemical breakdown. The

object decides at run time the method chosen to execute. The user can

define not only nontraditional data types, but he may also define

nontraditional operations to execute with the extension. This extensibility

starts with the most general case, ENTITY.

The PROBE Data Model's (PDM's) basic constructs are entities,

functions, relationships among entities, and operations on entities. Entities

are real-world objects, and functions represent properties of entities.

Functions and entities are manipulated by the PDM algebra, an enhanced

relational algebra used to manipulate the lower level requests natural to

relational type queries. The system includes the notion of an entity, the

ability to manipulate entities, support for computed functions, and support

for spatial and recursive queries. It allows for the definition of new entities

and functions by the end-user through the object-oriented extension.

In order to add an object class to the model, the database implementor

constructs a specialized database system. An interface between the

extensible database system and the object classes is well defined, so the

construction is much simpler than modification of a conventional database

system. If a modification to a relation occurred in a Relational DBMS

65

(RDBMS), adding some new attributes to a relation, then everywhere in the

application that tuple is referenced would have to be changed. In an object-

oriented system, such a change would only require adding a new method to

an object class, and none of the existing applications programs would be

affected by the change, other than the new application added to use the new

information added by the schema extension.

The PROBE database system meets the needs of nontraditional

application areas not met by traditional database systems. It is possible to

represent complex arbitrary data types, and specialized operations that can

be difficult or impossible to specify in traditional database systems.

PROBE supports extensibility by incorporating arbitrary object classes.

The PROBE Data Model contains objects and functions and is

extensible because new objects can be easily created. This approach is

supported by architecture where the database system kernel is concerned

with sets of objects, while object classes are concerned with application

specific details. The breadboard implementation of PROBE includes the

Data Model and query language. Object classes were added to support a

simple geographic application and three dimensional data to support an air

traffic control application [Ref. 18].

PROBE is a excellent database system for any data processing

application not considered traditional data processing. The ability to extend

the application to meet any user's needs makes PROBE a system with

unbounded possibilities. Even traditional database applications can benefit

66

from an object-oriented DBMS because of the additional features provided

such as reusability of software, concurrency attributes, automatic triggering

mechanisms, and information hiding.

2. Robust Generation of Unique Identifiers

Managing objects in a distributed environment can be as

complicated as managing data in a distributed environment. Algorithms can

be designed to efficiently manage the objects. The portability of objects in

a distributed system can cause identification problems. The method

described in "Robust Generation of Unique Identifiers in Distributed

Systems," [Ref. 20], addresses the problem of generating unique identifiers

for objects in a distributed system. Objects are location independent and

each object is assigned a permanent identifier. The object can then move

from one mode to another and the object identifier does not change. Nodes

in a large distributed system can be created and destroyed on a regular

basis, and so generating node identifiers can be a complicated task.

Because objects are portable, the identifier must be unique regardless of

time and location of the objects' creation.

The objectives of the method are to generate globally unique identifiers,

eliminate the need for a vote by nodes, minimize storage space required for

an identifier, and minimize communication between nodes. An existing

node runs an id generation algorithm which has access to its own unique

identifier. It is responsible for assigning an id for a new node and is called

the parent. The system starts out with a preallocated number of nodes

67

whose identifiers are manually assigned. When a new node is created, an

identifier is generated and its existence is recorded into the system catalog.

There are four methods for generating identifiers: the centralized

method, a partially distributed method, a completely distributed method with

minimum communication, and a completely distributed method with modest

communication and balanced use of name space. A centralized id server is

the parent of all other nodes and produces identifiers that are optimal with

respect to identifier length. It is unreliable because it is dependent on that

one node. The partially distributed nodes reduce the sensitivity to failure

by replicating the central server node. Each identifier server controls its

own name space and operates independently of the others. It is vulnerable

to failures, such as a network failure, but would perform well in

architectures with communications redundancy. The minimum

communication method is fully distributed and requires only the identifier

part of the parent node as input. Any node can act as a server. The system

is not vulnerable to network partitioning failures since a server is resident at

each node. The method uses the genealogy concept for identifying objects,

which creates a family tree of identifiers. This can lead to a long node

identifier and is expensive in storage, but it is reliable in terms of node and

link failures.

The final method addressed in this paper is a balanced robust identifier

generation. The length of the node identifier is reduced by slightly

increasing communication. The fully distributed method is used in

68

conjunction with a facility for tree balancing. This version most effectively

reduces communication costs and susceptibility to network failures while at

the same time reduces storage required for storing the unique identifiers.

Reusing identifiers is a necessity, since the size of preallocated

identifiers to accommodate a maximum number of nodes is very large. A

free list is associated with each node when sibling nodes are destroyed.

Then it is checked first when new nodes are created. The free list size must

be controlled in large systems, and can be metered to measure optimal

system performance.

Four methods for generating unique identifiers were presented. The last

version makes use of methods which generate optimal identifier length

while minimizing the effect of network partitioning failures. Consideration

of object allocation in an object oriented database system is required in

order to maintain an efficient system which can respond to the users needs.

The system must at the same time be able to respond to node failures in

order to allow the applications to continue processing while minimizing the

system resources, memory space, used.

D. CONCLUSION

With the demand for more accurate, faster, more versatile software,

today's programmer will be forced to approach new ways of programming.

The object-oriented concept of Software ICs applied to database

management functions will enable database software to be reused, and

69

eliminate constantly repeating code, especially for menial tasks. The

extensions made available by object-oriented DBMSs provide unlimited

possibilities in the types of application problems that can now be solved

through database management.

Traditional database systems are suitable for applications that can be

easily described in terms of tables containing numbers and short text

strings, especially if there are only a few types of tables and the number of

entities in a table is very large.

Object-oriented database systems are better suited for applications

containing more complex data with hierarchical substructures, a large

variety of data types, and specialized operations and constraints on the data.

Examples include computer-aided design systems, knowledge bases for

expert systems, geographical modeling, robot control systems, and multi-

media data analysis systems that combine audio, video, text, structured

symbolic data, and numeric information.

The object-oriented database concept is relatively new, and currently

available implementations do not support the full potential of the idea.

More work is needed in implementing the full range of capabilities

promised by the new approach, and for providing efficient realizations for

the new capabilities. Theoretical studies indicate that object-oriented

database management techniques should be more efficient than traditional

ones in applications with large numbers of object types with relatively small

numbers of instances per type. Traditional database implementation

70

techniques have been oriented towards small numbers of relations and large

numbers of tuples per relation. New clustering and partitioning techniques

are needed. Some steps in this direction are described in [Ref. 21] and

[Ref. 22].

Object-oriented techniques hold great promise for more flexible

applications, which can be built and modified with a small amount of effort.

Libraries of reusable generic objects contribute to this goal. To alleviate

the burdens of learning the contents of a large software base containing

these reusable objects, expert systems for finding and combining available

objects are being developed [Ref. 23].

In spite of the benefits discussed in this chapter, NMPC purchased the

Model 204 RDBMS only several years ago, and has not made full use of

that system yet. It is not possible to justify the cost of a new, object-

oriented database management system. The new purchase would include

such additional costs as personnel training, database systems support, and

conversion costs, to mention only a few. The applications for which the

DBMS will be used do not require the extensive features available in that

type of system.

71

V. KNOWLEDGE BASED SOFTWARE ASSISTANT

A. INTRODUCTION

Advanced tools and programming environment capabilities supporting

the software lfifecycle are just becoming generally available. Many of these

tools are focused on one aspect of the software development process.

Additoonal capabilities that provide a high degree of coordination and

communication among large numbers of software engineers, hardware

engineers, and managers are required. The framework within which the

software is developed plays a major role in realizing these capabilities. A

Knowledge Based Software Assistant (KBSA) framework is being

developed by Honeywell Systems and Research Center and is supported by

RADC [Ref. 24]. This system provides an advanced framework containing

a distributed knowledge base. The KBSA knowledge base can support data

representation needs of tools, provide environmental support for the

formalization and control of the software development process, and offer a

highly interactive and consistent user interface. Programming environments

for large-scale programming requires programming objects to be easily

sharable between programmers, maintained with multiple versions, and

protected by a user access policy. The use of a knowledge based

programming system allows the machine to capture the software decisions

72

and the advanced reasoning mechanism may further assist with these

decisions.

B. KBSA DESIGN

The design objectives for the KBSA are: 1) support for the data

representation needs of lifecycle tools, 2) support for coordination of

activities that occurs during the software development process, 3) support

for multiple levels of integration of tools, and 4) provide a highly

interactive and consistent user interface.

The KBSA facet efforts are supported by three different frameworks.

1) Socle supports the Requirements Assistant and is a frames-based system

that has been extended with mathematics constraints. 2) The Common

Lisp Framework (CLF) supports the Specification Assistant and provides

programming environment primitives used to represent programming

knowledge. 3) Refine supports both the Project Management Assistant and

the Performance Assistant and is an integrated language programming

system. Each framework supports an object-oriented view of programming

knowledge [Ref. 24].

The knowledge base manages the history of software development in

the programming environment. Objects managed in the knowledge base are

manipulated by the object schema, methods, rules, and demons. The object

schema defines object classes containing a name, optional supertypes, and a

list of slots. Methods define the messages accepted by the object class and

73

the operations that manipulate its instances. A demon associates an object

method with a predicate condition and invokes a method whenever the

predicate is satisfied.

The distributed object-oriented database is the basis for the KBSA. The

programming environment support provided by the KBSA provides support

in the following five areas: distributed knowledge base, access control,

configuration control, transactions, and permanence.

The distributed knowledge base includes a wide range of information

accessible and exchanged between users (programmers). The objects in the

KBSA should be transparently managed and distributed by the system.

Therefore, the user need not be concerned with the location of the data,

duplication of the data, simultaneous operations on the data, and operation

failures [Ref. 25]. Changes in the workspace by one programmer would

cause immediate notification and provide real-time information about

activities to all programmers using that workspace. The distributed objects

are always manipulated by the framework.

Access control in any multiuser system provides protection for that

system against unauthorized use. The framework in KBSA uses a scheme

based on the capability model using two basic object classes: roles and

contexts. A role is the relationship between a context and a knowledge

base object. Each user is described with a single context object. If a

context and an object both point to a given role, then the conte..t has access

74

to the object using read or write permissions contained in the role. Access

may be inherited along an inherited-role relationship.

Role Grant: read/write

Current R Inherited-Role

FEontext A IRole Grant: read

Current Roles Roles

Context B Object

Figure 5 Access Control

In the example in Figure 5, Context A user is granted read/write access

and Context B user is granted read only. The process has been designed to

be flexible and efficient [Ref. 25].

Configuration control is the ability of the framework to manage

multiple instantiations of a single object. Control of modifications and

maintenance history of tie objects must be maintained. Parallel

development paths may be supported as decribed above in Chapter 4. A

consistent configuration control policy is required.

75

Consistency of data must be maintained in a distributed system.

Multiple operations on the knowledge base may cause an inconsistent view

of the data until all operations have been applied. The system collects all

operations into a single transaction to ensure the knowledge base does not

attempt to resolve temporary inconsistencies until the transaction is

complete. If there is an operation failure and a transaction is incomplete,

the preceding operations are backed out until the whole transaction can be

reapplied to the knowledge base.

Permanence is a consistent state of the knowledge base stored on non-

volatile storage medium so that critical knowledge will not be lost in a

system failure. Upon completion of a transaction, the knowledge base is

brought up to date. In the case of a failure, the knowledge base can be

brought back to the state it was in before the last transaction was started.

The user interface for the KBSA must be flexible enough to allow the

beginner and expert programmers to navigate easily through the system and

use the tools available. The user interface can be used in a graphical

mouse-driven mode or a command interface mode.

The KBSA framework expands on existing technology in the following

ways:

1) insures data integrity on behalf of tools it supports

2) provides associative access to data objects

3) provides distributed access to data objects on separate workstations

4) enables software activities to be formally described

76

5) provides for the management of changes to objects

6) provides a standardized set of user interface functions to tools

All of these capabilities could not be possible without the features of an

object-oriented database.

The database can be viewed as a single object database accessible by

all users on separate workstations. It synchronizes engineering operations

that are performed against redundant stored copies of a data object. The

knowledge base will support atomic transactions on the database to enable a

set of operations to be handled as a single database state change [Ref. 25].

Several prototypes of the KBSA have been created to verify particular

ideas with regard to a distributed object management system. The goal is

to provide a programming environment with the additional capabilities

mentioned above that also uses existing industry standards whenever

possible. The prototype issues already explored are: logic mapping,

constraint maintenance, access control, distribution, and permanence. The

prototype issues which have yet to be investigated are: configuration

management, transactions, and interfacing. Additional information on these

prototypes can be found in [Ref. 25].

C. COMPARISON OF PROBE AND KBSA

The KBSA and PROBE designs are quite different extensions of the

common feature of an object-oriented database. This is one of the strengths

of an object-oriented database system. The users are able to develop

77

extensions to the database which are specific to their needs. Both systems

attempt to solve very difficult problems where solutions are not normally

attempted in the database management area. The KBSA was designed

specifically to support an integrated knowledge based programming

environment, where PROBE attempts to remain a more general solution to

the nontraditional problems in database processing. The PROBE system

provides built-in support for geographical and spatial data. The KBSA

frameworks provide support for software development applications in a

distributed workstation environment.

D. CONCLUSION

There are a large number of programming tools on the market today.

However, many of these tools do not provide any integration with other

software development tools. High level framworks can provide to the user

the appearance of many tools to be closely integrated. In particular, the

KBSA tools use many high level frameworks and consist of a large number

of small operations. These operations are invoked by the state of the

knowledge base rather than by the user. New integration techniques are

required to join tools in the environment, integrating these tools is an

effective means for providing users with the support for different

programming needs and processes.

78

VI. TRANSITION AND INTEGRATION

ISSUES

A. INTRODUCTION

In order to continue supporting the users that have become dependent

on automatic data processing systems to perform their jobs, the systems on

which they work must continue to perform adequately in their eyes. As

soon as the systems are no longer supporting the users, they will no longer

use them, but instead will find ways to work around them. As ADP

equipment becomes more powerful, and software can perform more

functions, the users of those applications will continue to use the systems

more, and they will continue to think of more applications which need

support through the software. Telecommunications between users will

become more important as the daily functions of their jobs becomes more

dependent on those lines of communication. It is necessary to continue to

support the users of ADP systems with up-to-date hardware, software, and

telecommunications. This chapter discusses issues for transition aiid

integration through up-to-date or state of the art hardware, software, and

telecommunications in order to continue support for the users of NMPDS.

79

B. HARDWARE

Many Navy Commands are finally acquiring ADP support. However,

quite often the equipment is outdated within a few years of acquisition.

Navy ADP Managers are looking for ways to update their hardware without

having to go through a long, drawn-out process. One way to upgrade

Automatic Data Processing Equipment (ADPE) is to "piggyback" on a more

general contract. For example, the Desktop 11 Air Force/Navy Zenith-248

microcomputers were purchased by various DoD departments through that

type of contract. This section of the chapter will investigate conditions and

definitions of a requirements contract, the procedures involved, and other

facets of the agreement that NMPC must be aware. Alternative

considerations are discussed, as well as advantages and disadvantages of

"piggybacking" on a contract.

1. Background

The ADPE acquisition process for large systems in the Federal

Government can be a time consuming event. In 1979, the Distribution

Support Division (NMPC-47) was tasked with developing a strategy to

support the Distribution Department using automatic data processing

equipment. At this time, the complete process was handled by passing

volumes of paper from desk to desk. NMPC-47 developed a strategy which

included two major efforts: ADPE acquisition and Software Development.

Four AIS projects were conceived to manage officer distribution, enlisted

distribution, training assignment reservations, and distribution management

80

support. The lengthy process involved to acquire ADP equipment required

that NMPC lease hardware in order to develop the software. Milestone 0

approval for mission analysis and project initiation was gained, and

contracts were awarded to two separate contractors to develop the projects.

These contracts required the contractors to provide the leased hardware until

the NMPC equipment was purchased. The Request for Proposal

(RFP) was written and put on the streets in 1982 for a series of

minicomputers to be located in Washington DC, New Orleans, LA, and

Memphis, TN. The solicitation also included system software, database

management, and hardware maintenance, among other things. Several bids

were received, and evaluation of the offers commenced. A Source Selection

Evaluation Board (SSEB) was formed using six members of NMPC-47 and

tasked with evaluating the bids. This process was estimated to be a one

year process, and turned into a three year process. Each step of the way

was held up for one reason or another. The RFP needed changes as NMPC

gained a better understanding of the projects. The six members of the

SSEB were still required to perform their reqular jobs in addition to the

duties of the SSEB. Therefore, they worked on each job half of the time.

The value of the contract was $28 million, and so the bids required very

careful evaluation. No mistakes could afford to be made, and this slowed

the process. Contract award was initially planned for April 1983, and it

was finally awarded in April 1985.

81

In the meantime one project had begun development on a leased

Prime, been moved to a leased IBM, and finally was migrated to the

permanent NMPC IBM hardware. Another project had been developed on a

IBM 3033 run by the Navy (NMPC-16). Disk storage and terminal access

for both programmers and users proved markedly constrained by the

production priorities on the NMPC-16 equipment. Software development

for this project was much slower than planned. The third and fourth

projects were developed on a leased Vax 11/780. One of the subsystems of

the project went into production while on the leased Vax and still remains

there. Priorities set by NMPC-47 have not allowed for the time to convert

the software to run on the Navy owned IBM machines [Ref. 26].

The software used to develop these projects, Sage's Advanced

Programming System (APS) is a COBOL code generator, and enables the

programmer to produce COBOL code very quickly. APS was originally

planned to be fully portable from one machine to another. However, with

upgrades in the versions of APS, the company eventually decided to support

only the IBM compatible version of APS. Therefore, the software

developed on the Vax remained in the older version of code.

The amount of money spent on leased hardware and on converting

software to newer versions of APS is in excess of $3 million. The

excessive amount of money spent, compatibility problems between the

projects, migration problems moving to different hardware, and coordination

problems among the many players were primarily caused by the delays in

82

the hardware acquisition process. Even once the contract was awarded in

1985, only partial funding for the equipment was provided. Funding

shortfalls prevented delivery of all of the hardware awarded in the contract.

The original strategy planned for hardware upgrades and project redesign to

begin in 1990. If a similar acquisition strategy is used for this upgrade, the

new hardware may not become a reality until the late 1990's. Therefore,

NMPC-47 must use a new approach in order to continue support for their

users. By using a contract vehicle already in place, NMPC can concentrate

the efforts on receiving the funding approvals necessary to purchase the

new hardware.

2. Requirements Contracts

A requirements contract is an express contract where an agreement

with all the detailed tenns and conditions are clearly stated. The contract

specifically lists all requirements which must be met by the contractor.

These requirements are listed in the "specifications" of the contract, and are

mandatory terms required by the offeror.

The Desktop II contract awarded to Zenith on February 28, 1986

by the Air Force is a firm, fixed price, requirements contract. The contract

with Zenith Data Systems provides for the purchase of Z-248 desk top

microcomputers.

The basic Z-248 system on the contract has an 80286, 8MHZ
central processing unit with 512KB random access memory, dual
360KB floppy disk drives, various ports, enhanced display adapter,
MS-DOS 3.1 and MS-WINDOWS. The memory can be upgraded
to 1.1MB and then to 3.1MB, and up to two internal 20MB hard
disks can be added to the system. Other peripherals available on

83

the contract are dot matrix/letter quality printer with cut sheet
feeder, color graphics printer, graphics plotter, graphics input
device, RGB color monitor, monochrome monitor, dial-up 2400
baud modem, 20MB tape backup system, and an 80287 8MHZ
arithmetic coprocessor. A selection of system software, application
software, computer aided instruction packages, and various
emulators is also available on the contract. [Ref. 27]

This contract was an all encompassing contract which provided hardware,

software, and maintenance for the purchasing of microcomputers. It

provided a single contract vehicle for the agencies to use in order to acquire

all needed services.

Activities in the Navy, Air Force, and Defense Logistics

Departments are required to use this contract when general purpose, stand

alone workstation applications can be met by this contract. The contract is

not mandatory, but may be used by the Army, OSD, and other Department

of Defense Activities [Ref. 28]. The term of the contract is for 12 months,

with two additional 12 month options. Both 12 month options were

executed, and the contract expires on Feb. 28, 1989.

The Desktop II contract was very successful ia the eyes of both the

Department of Defense and Zenith Data Systems. According to Jeiry K.

Pearlman, president of Zenith Electronics Corporation, the success of the

contract was "by providing the government with the best life cycle costs."

Zenith was required to develop unique hardware for the government, and

they used it as a platform to grow into other channels of distribution. The

technical features developed for the government have become key building

blocks for their commercial strategy. For example the government pushed

84

for a lighter and smaller laptop, and Zenith scrambled to develop a very

small package. This package became successful commercially as the

SupersPort 286 package [Ref. 29].

The success of the contract was not anticipated by DoD officials.

The Government Services Administration (GSA) granted procurement

authority for 90,000 microcomputers for the 3 year life cycle of the

contract. As of January, 1988, defense personnel ordered more than

225,000 Z-248 microcomputers [Ref. 30]. The advantage was that the

contract was already in place, and agencies were abic to get their

microcomputers quickly and efficiently through the contract.

Microcomputers are playing a bigger role in the DoD by performing

functions that used to be done on minicomputers and mainframes.

3. Procedures

A primary advantage of using a requirements contract already in

place is the ease of purchasing the equipment. Procedures set forth in the

Desktop II Zenith contract were relatively simple to follow. This feature in

itself made the acquisition of microcomputers through the Desktop 11

contract very attractive to the various agencies. Points of Contact were

assigned in each agency to establish procedures and to help users with the

equipment purchases.

The Naval Data Automation Command (NAVDAC) designated the

Naval Regional Data Automation Command (NARDAC), Norfolk, as the

single POC for consolidating delivery orders from Navy activities to Zenith

85

Data Systems. The procedures for the Navy were outlined in a NAVDAC

Advisory Bulletin as follows:

1) Forward a requisition to the local ordering office for the creation of a
delivery order (DD Form 1155) citing the required Contract Line
Item Numbers (CLINs) and prices.

2) Ensure a POC name and telephone number at the ordering office are
included.

3) Include a technical user POC name and telephone number for receipt
of any advance information regarding technical and administrative
handling of equipment upon delivery.

4) Partial deliveries are allowed only at discretion of the Government. If
the user desires, the delivery order must state which items will be an
allowable partial delivery.

5) Include necessary shipping instructions.

6) The order should indicate security clearance required for on-call on-
site maintenance personnel.

7) A maintenance plan specified in the contract must be designated on
the delivery order.

The ordering office forwards the DD 1155 to NARDAC Norfolk along with

a Comptroller of the Navy Form 2275 for 2 percent of the total delivery

order. NARDAC consolidates the orders, logs them, and forwards them to

Zenith Data Systems. Microcomputer technical assistance is provided by

each of the NARDACs. This assistance includes configuration support,

training classes, applications development, networking, and interconnection

services [Ref. 27]. Many activities purchase hardware without receiving the

proper training and support. Ibis service offered by the NARDACs is very

valuable. In addition to the support mentioned above, NARDAC Norfolk

86

produces a monthly magazine, CHIPS, specifically designed to help the

Navy microcomputer users gain a better understanding of their machines.

4. Desktop III

The Desktop III contract is the follow-on contract to the Desktop II

Zenith-248 contract. It includes specifications for a high-end, next

generation microcomputer. These systems will be 16 or 32 bit processors

built around either the Intel 80386 chip or the Motorola 68000 series chip

technology. The machine should be compatible with the enormous amount

of Z-248s currently owned by the Department of Defense. The

microcomputers may be MS-DOS based, but also will provide for the UNIX

and OS/2 operating systems [Ref. 31]. Some other features discussed are

removable hard disk technology, shipboard power spike protection, and

requirements for modems to be used outside the United States.

A recent article in Government Computer News announced another

extension in the deadline for proposals for Desktop 111. Original deadlines

were set for November 1988 and original contract award was expected to be

made in February 1989. The Air Force Standard System Center (SSC)

announced the extended deadlines to be March 3 and March 13 for the two

separate parts of the proposal. An award date has not yet been determined.

Once propo-'als have been received, an estimated time for evaluating the

bids will be given. Time last announcement by the Air Force projected

August 1989 as an estimated award date. No changes were made to that

date in the recent announcement. The SSC announced the seventh

87

amendment to the RFP on January 26. The extension was given to allow

vendors time to incorporate changes in their proposals due to the

amendments [Ref. 32].

A memorandum of agreement was signed several years ago by the

Air Force, Navy, DLA, and other Defense agencies and cooperation among

these services will continue on both the program and project levels.

Management representatives and contract officers from the agencies meet on

a quarterly basis at the program level. Project managers brief the program

managers on their specific projects, including Tempest computers, Z-248s,

multiuser systems and laptop computers [Ref. 31]. The Air Force Small

Computer Center, a division of SSC, is the program office for Desktop III

and communicates with its user community by sending out surveys to

determine what people will need in their desktop computers. When the

answers are received, the center consolidates them and sends the responses

back to the users for review and comment. Preliminary specifications are

written and sent out for another look. With a user community as large as

the Department of Defense, the Air Force is faced with a difficult task of

including all user requirements. This has contributed to the large number of

modifications to the Desktop III RFP.

The procedures for ordering hardware and software will be similar

to the Desktop II procedures. These procedures have been working

smoothly for the past four or five years, and so there are no anticipated

changes.

88

5. Alternative Considerations

Once minicomputer machines have reached maximum utilization,

steps must be taken in order to continue servicing the user community.

One option that will provide support is to purchase larger or more powerful

machines. These may be either mainframe or minicomputers. The cost of

purchasing these type of machines usually exceeds the $250K for

noncompetitive buys and the $2.5 million for competitive buys authorized

by GSA under the blanket delegation of procurement. Therefore,

competitive procedures according to all instructions must be followed. The

process may take several years, as mentioned in the background section of

this chapter. Many situations can not withstand this excessive time limit,

and mainframe and minicomputer solutions must be examined carefully.

Powerful microprocessors are allowing users to perform more and more

functions on smaller and less expensive machines. Unless the applications

require the processing power of a large machine, a mainframe may not be

necessary.

A readily available source of purchasing microcomputers is via the

GSA schedule. The GSA negotiates contracts with vendors in local areas to

provide federal agencies with products at a reasonable price. The items

listed on the GSA schedule contracts are usually discounted to a price lower

than that offered to the commercial customer. However, these items may or

may not meet the special needs of the military user. Requirements

contracts are able to specify these unique requirements for the users, and

89

are still able to negotiate prices lower than the commercial market. The

GSA schedule contracts provide a reasonable means of acquiring

microcomputers if a requirements contract is not currently in place.

A viable solution that can provide more processing power to the

user is to upgrade the microcomputers already in place. Motherboards and

additional memory boards are readily available on the market today. These

options can upgrade machines with the 8088 microprocessor, 8086

microprocessor, and the 80286 microprocessor. For the older machines, the

upgrades required to gain the speed provided by machines built around the

80386 microprocessor may be extensive, i.e. screen/graphic displays,

printers, modems, etc.. In some cases, it may be more effective to purchase

a complete new package as a whole unit in order to provide the user with

equipment that will still be effective in the near future. These options must

be considered carefully. The growing number of microcomputers in the

Defense Department and the shortages in money will force managers to find

innovative ways to improve the life cycle of their microcomputers.

6. Conclusions

Working together has provided the Department of Defense several

benefits through their memorandum of agreement made a few years ago.

By combining common functions and having unique requirements placed on

them, the agencies can negotiate contracts to best meet their needs.

One specific area of benefit to the agencies is the cost savings.

Only one organization is tied up with writing specifications, soliciting

90

proposals, evaluating bids, and administering the contract. The other

agencies are not required to spend time or other valuable resources in

duplicative efforts on negotiating a contract. This has probably saved the

Department of Defense millions of dollars in man-hours alone.

Cost savings can also be realized by using a requirements contract

for workstation applications to purchase microcomputers that provide the

additional processing power needed. The typical mainframe or

minicomputer solution to the processing power problem can be much more

costly. The needs of the users can be matched more closely to the amount

of hardware purchased.

Another benefit to using a requirements contract that is already in

place is the quick delivery. Without the added time delay negotiating the

contract, all efforts may be placed on obtaining the funding required to

purchase the equipment. Once funding is approved and allocated, the

delivery order may be typed immediately. Once NARDAC receives the

order, in this particular case Zenith will deliver the ADPE within 30 days:

A marked improvement over four years. An additional benefit in this area

is the consistency of personnel involved in the decision making process,

especially the "upper management". The projects sponsored by NMPC were

strongly supported by high-level management in the early stages. However,

as time progressed, the personnel also moved on to new positions. Each

new flag officer required a briefing of the projects. Priorities often

changed, and so funding may or may not have been sought after as

91

fervently. Therefore, the sooner hardware can be purchased, the more likely

project offices can avoid changes in mid-course.

A final benefit to using a requirements contract is the "hassle free"

environment. The individual agencies and organizations are not

administering the contract. There is no need to be concerned with the legal

matters of the contract administration. The procedures for purchasing

require each agency to use one point of contact in dealing with the vendor.

This organization is the only one that needs to be tied up with the minute

details. Equipment maintenance has already been negotiated, and the

agencies must adhere to the agreements set up in the contract. Most of the

bureaucratic red tape has been taken off the shoulders of the individual

activities. Contract "piggybacking" seems to be an excellent way for

organizations to move to the next generation.

C. SOFTWARE

The strategy that must be applied in order to keep NMPC running in an

efficient software environment is a bit more vague than the strategy of the

hardware environment. Unfortunately, this is one of the downfalls of the

software development process in general. Guidelines can be set up to be

followed, but in general the process is vague and subject to the definition of

the players involved. Unfortunately, in the case of a Navy command, the

players are continually moving, and so the definitions of the elements in the

software development keep changing. Therefore, the best strategy for

92

developing or upgrading software is to do so in a modular fashion.

Distributed database management systems are showing many benefits over

centralized database systems as described in Chapter 3. By developing the

systems a small chunk at a time, only a small number of players need be

involved. This may reduce the amount of midstream changes in the

process.

The reorganization of NMPDS will provide an excellent opportunity for

redesigning the software. For instance, the Assignment Management

Support System (AMSS) may be an excellent starting point. Convert one

of the smaller modules of AMSS from using flat files into a module using a

DBMS. The applications will change as the functions available from the

DBMS provide more and better capabilities. Functions that are now being

performed differently in the officer and enlisted systems may be combined

into single functions. As the system modules are redesigned and the

hardware is purchased, the modules may be downloaded to the

microcomputers or workstations and run in a distributed environment.

The design of the database files will be a primary issue in the software

redesign effort. The Data Administrator, Database Administrator, System

Administrator, and Project Managers should work very closely together in

order to design the most efficient database system. In the early

development stages of NMPDS, there were no statistics available from the

hardware systems administration, since each project was developed on

different leased machines. Now that there are some statistics available from

93

the current NMPDS hardware, these statistics may provide a guide for the

design of the database files. For example, statistics have shown that there

is a high rate of input/output operations which severely slow the current

system. By designing the database files with these statistics in mind, a

management process may be designed to handle the input/output operations

more efficiently.

Database management system performance should be an issue

considered meticulously along each step of the redesign effort. If

performance issues are not addressed initially, they will quickly become

problems once the system is in full use by the application users. Computer

Corporation of America's (CCA's) objective was to design Model 204

Database Management System to be an "advanced data model for rapid

retrieval of information from very large databases." [Ref. 33] The Model

204 DBMS design provides flexible and efficient data base manipulation.

The number of tests run by CCA have shown excellent response times for a

large number of complex queries against extremely large databases. "Model

204 has accommodated as many as 800 simultaneous users accessing a 15

gigabyte database with less than two second average response time." [Ref.

33] By using a DBMS designed for efficient processing in a distributed

environment, like Model 204, then performance problems will be delayed in

comparison to using a more traditional solution.

The NMPDS system maintains a large number of interfaces with

external systems. The four current systems use input from at least six

94

different organizations, and each project produces output to a number of

other activities. These external activities may or may not be currently

running under database management systems. The interfaces between the

different systems may develop into a major issue. The Chief of Naval

Operations (OP-162) sponsored a study on seven Manpower, Personnel, and

Training (MPT) or research-based A1Ss, the database management systems

used by those AISs, and the level of effort anticipated to communicate data

between the various DBMSs.

The draft response written by Oak Ridge National Laboratories (ORNL)

discusses the interface issues between the relational model DBMS

(RDBMS) and the non-relational database systems in the group. Of the

RDBMSs, some of the languages used are SQL-based, and some are not.

This provides an additional interface issue between the systems. The

ORNL response suggests an Interface Processor (IP) to provide

communications between the query languages and the query responses from

any one of the seven D3MSs to any other. Each organization has a mono-

model, mono-lingual DBMS, also referred to as a homogeneous DBMS

[Ref. 34]. Current research efforts in the "heterogeneous DBMS" field are

showing excellent results for future DBMS communications. Each of the

seven DBMS systems mentioned by ORNL are homogeneous DBMS which

do not provide database access across models or automatic translation of the

query languages. In [Ref. 34], both software and hardware solutions are

presented for heterogenous DBMS environments. The software solutions

95

provide better overall data sharing, control, and utilizations through data

model transformation, data language translation, and cross model accessing.

The hardware solutions suggested in the paper provide lower maintenance

costs and better support of upgrade capabilities. Some variations of these

types of solutions are on the market, and as the need for inter-DBMS

communications increases, so will the availability of commercial products.

An additional interface issue for NMPDS is with the Military Personnel

Record Data Management Department (NMPC-3). A project initiated by

NMPC-3, called System 90, has been proposed to convert the enormous

amount of military personnel microfiche records to digital data on optical

disk storage. The microfiche contain exact replicas of the personnel

records, and are used for official archival purposes. Some of the documents

contained in the records have signatures, which cannot officially be

reproduced through text representation. Therefore, "pictures" of the

personne! records must be recorded, either through microfiche or optical

disk storage, in order to meet U.S. legal requirements. The microfiche

contain fitness reports which are used by the Distribution Department

(NMPC-4) along with other information from the microfiche in order to

manage naval manpower resources and fill world-wide vacant Navy billets.

A pilot system has been proposed which will meet both the needs of

NMPC-4 and that test essential characteristics of the proposed system in its

entirety. The System 90 pilot system will use optical/laser disk storage

which will allow the storage and retrieval of all personnel records

96

mentioned above. It will require on-line access for terminal, personal

computers, or workstations with very high resolution screens to allow

display of the optical images. The hardware and software development

plans for both organizations should include and combine the requirements

specifications as well as the funding requirements of each organization.

The hardware proposed in the first section of this chapter meets both

organizations' needs.

D. TELECOMMUNICATIONS

The current NMPDS telecommunications configuration can be divided

into two categories: local area and wide area. The local area network

installed in Washington, DC, is a broadband coaxial cable. Long distance

communications include 56 KB lines and 9.6 KB lines leased through

public data services. The local area network was initially installed as a

"Beta Test site" for OPNAV (OP-16) in 1984 and 1985. With statistical

multiplexing and full duplex features, it can provide service for up to 1500

users. Telecommunications for long distance applications will be via the

Defense Data Network as soon as that system is installed at all NMPDS

sites.

The future needs of NMPDS in terms of telecommunications are to be

able to: 1) download or upload database files from the minicomputers to

workstations, 2) provide real-time distributed data between the local users

where required, 3) provide synchronized data among long distance sites, and

97

4) provide contingency operations in case of failure of a site or

telecommunication line.

The minicomputers resident in Washington should act as network

servers, providing communication protocols, broadcast strategies, and overall

coordination of the network. Some possible distributed solutions were

discussed in Chapter 3 and can be applied by using characteristics of the

desired system to choose an appropriate network strategy. There are only a

certain number of data elements in NMPDS that require real-time update

distribution among local users.

The Officer Assignment Information System, with the personnel,

activity, billet, and policy files, for the most part does not require that

changes to data be distributed immediately. A person in the personnel file

can be assigned by only one detailer, a billet can be approved by only one

placement officer, and so for the general daily operations, real-time

distribution of updates is not required. Reservations to seats in training

classes, on the other hand, can be executed by several detailers. Here is a

requirement to broadcast the changes of the data elements with respect to

the seats available in a particular class, or to send all queries to a central

location for each particular class. A network strategy must be designed to

alert local users when seats have been reserved, and to update each users'

local database. At the time of database design, the elements that require

real-time update should be identified.

98

The full duplex feature of the local area network allows simultaneous

two-way communication signals on the cable. This feature is necessary to

provide real-time update to the more than 500 local users of NMPDS. At

least for the next five years, the local area network has sufficient capacity

to support the developments of NMPDS.

E. CONCLUSION

The primary transition and integration issues for NMPDS to move to a

distributed database management system will be in terms of hardware,

software, and telecommunications. The best choice for acquiring the

necessary hardware is to use a requirements contract such as the Desktop Ill

contract to purchase high end microcomputers that may be used for

workstation applications. The software redesign efforts should be done in a

modular fashion while concentrating on issues such as database performance

and integration with external database systems. Every effort should be

made to combine the NMPDS requirements with other organizations like

NMPC-3 to gain the maximum utilization of new hardware and software

technologies. The telecommunications efforts combine some of the

hardware and software issues of NMPDS. However, emphasis in this area

should be placed on designing an appropriate network communication

protocol to meet the specific needs of NMPDS.

99

VII. CONCLUSION

A. SUMMARY

This thesis investigates the implementation of a distributed object-

oriented database management system. By using the Naval Military

Personnel Command (NMPC-47) automated information systems as a case

study, the research explored the possibilities, requirements, and issues

related to distributed database management systems (DDBMS) and object-

oriented database management systems (ODBMS). A variety of distributed

methods, algorithms, and protocols are presented and discussed. The

features and benefits available from work in the field of object-orientation

are discovered and reviewed. The Knowledge Base Software Assistant

(KBSA) is a distributed system developed by Honeywell Systems and

Research Center for Rome Air Development Center. This project explores

the concepts of using a knowledge base framework to provide a complete

and integrated programming environment for software development of large

systems. By using a distributed object-oriented database management

system, the project goals have been met. Transition and interface issues are

then discussed for NMPC to consider in terms of hardware, software, and

telecommunications issues.

100

B. RECOMMENDATIONS

A distributed environment has been demonstrated by many research

reports as the most efficient and practical way to process information in the

future. Systems may be distributed in terms of where the data is located, or

in terms of where processes are executed. An appropriate algorithm must

be chosen that specifically meets the needs of the system being distributed.

The features that an object-oriented DBMS can provide include

extensibility, software reusability, and representation of complex data

structures. Applications developed using an ODBMS are revealing even

more benefits than originally expected. However, this concept is still

relatively new, and currently available implementations do not support the

full potential of the idea. Until more research can be completed in this

area, NMPC should not consider changing from the DBMS currently in use

by that organization.

The most appropriate way to implement the distributed environment at

NMPC is through the use of microcomputers as workstations. The

hardware can easily be obtained through joint service requirements

contracts. Distributing the data and processes onto each users' workstations

alleviates the tremendous workload currently on the NMPC hardware.

NMPC has obtained $1.1 million FY90 OPN funds for hardware

upgrades, [Ref. 35]. A portion of that OPN funding, $15-20k should be

earmarked to purchase five machines through the Desktop III contract. The

estimated price of the microcomputers is $3-5k. Desktop III contract award

101

is anticipated for early FY90, and the processing of the hardware acquisition

can occur immediately. These five machines should be distributed within

NMPC-47 as follows: one machine to the N-47 technical advisor, one

machine to the N-47 database administrator, and three machines to the

software development team. These microcomputers should not be obligated

to specific people, but rather should be made available whenever

development of this project is concerned. These machines would initially

be used for testing the new software, testing download and upload

processes, testing machine capabilities, and evaluating system specifications.

By using these machines early in the development process to gather system

performance statistics, more accurate recommendations can be made by the

technical advisor for the future of NMPDS.

The software development process should begin first with conceptual

design of the system. Approximately one month should be used to decide

how the new projects should be organized. For example, AMSS will

consist of the functional modules currently in OAIS, EAIS, and SPIRIT.

There are functions in each project that are unique to the application, and

there are many functions that are the same, or similar across the AISs.

Each project requires information from personnel records, but the officers

and enlisted look at different information. An Officer Personnel

Information Module (OPIM) and an Enlisted Personnel Information Module

(EPIM) may be the first two modules converted to the Model 204 DBMS.

Additional modules may include both officer and enlisted versions of : 1)

102

an Assignment Decision Module (OADM and EADM), 2) a Training Track

(OTT and ETT), 3) and Order Production Module, and 4) other modules

appropriate for this system.

Once conceptual design for the first project is completed, database

design must begin. The database design process should include the

following players: the Data Administrator, the Database Administrator, the

Project Manager, the Techmical Advisor, and 2 or 3 programmers. If the

team is much larger than this, the productivity within the group will begin

to go down. For the first few months, it may be advisable for this group to

meet away from their regular workspace to avoid interruptions from their

jobs.

The order for which the software should be converted may follow along

with the original development plans of the projects. For example, the

Surface Warfare officer detailers were the first users involved ini OAIS. By

dividing the modules into applications that work for smaller groups of

users, the process is more successful.

The initial module should take approximately six months to be

developed, and then the module should be thoroughly tested. The major

problems with the software will be identified and resolved. At this time,

more programmers should be added to the development process. The

programmers should be divided into teams of 3 or 4 programmers to work

on these modules. The teams should consist of a mix of navy programmers

from the NNPC-47 Information Center and contractor personnel. Modules

103

are designed by the original team mentioned and assigned to programming

groups for development.

This conversion will require a major effort. Although the level of

effort will not be equal to that of automating a manual process. the support

required to accomplish the conversion will be a necessity. Funding to

support the software conversion must be approved. Management must

assign this process a top priority in order to gain the support and

enthusiasm from all personnel. Cost benefits analysis should be completed

to back up the benefits proposed by the conversion. Any new development

efforts should only be done in Model 204 after the beginning of FY90.

Throughout the software conversion development process, the users

should be intricately involved. User group meetings have been used in the

-Develop/Prototype

Test FY-90 FY-91 FY-92 FY-93
)O(XXX Production

AMSS
OPIM (X
EPhIM --'---=)O XX
EPIM , xx
OADNMXXO
EADM OX
OTT ---- XXXXErT - -- ×XXXx
OPT ---- Ixxxx
OPM "XY
EPANS *--iOX
OPANS * -- nXX)O(

AMSAS XXX

IMSS xxxx

MRSS
• NMPDS
Implementation Plan MPTSS

Figure 6 NMPDS Conversion Plan of Action

104

past by NMPC-47 to communicated with the users during software

development. These user groups now consist of representatives of all users.

This large group may encumber the development process. Trying to

incorporate all user requirements from the beginning can often bog down

the development process to the point that no software may ever be place

into production. With this in mind, a few officer detailers from the Surface

Warfare Division should represent the user community upon initial

development. Figure 6 is a chart of the estimated timeline for the

conversion of NMPDS to a distributed DBMS.

105

LIST OF REFERENCES

1. Distribution Support Division (NMPC-47), Naval Military Personnel
Distribution System Implementation Plan, Department of the Navy, May
31, 1988.

2. Oak Ridge National Laboratory, "Draft-Evaluation of Need for
Converting NMPDS Data Files to a DBMS," Unpublished paper, 1988.

3. McGovern, J., "DCA-A Distributed Communications Architecture",
Evolutions in Computer Communications, pp. 359-366, North-Holland,
New York, 1978.

4. Saito, M., Kawazu, S., Izuoki, T., and S. Ishigaki, "Concept and Design
Considerations of Hierarchical Database Acess Protocol for Distributed
Database", Evolutions in Computer Communications, pp. 817-821,
North-Holland, New York, 1978.

5. Snyders, Jan, "Definition of 'Distributed' Depends on Whom You Ask,"
Goverunent Computer News, pp. 72-74, August 29, 1988.

6. Hayashi, T. and Sakai, T., "Considerations on the Design of a Network-
Oriented Operating System", Evolutions in Computer Commuications,
pp. 239-244, North-Holland, New York, 1978.

7. Ono, K., Urano, Y., Suzuki, K., and Kurematsu, A., "Distributed
Communication Processing in a Packet Switched Computer
Communications Network", Evolutions in Computer Communications,
pp. 657-662, North-Holland, New York, 1978.

8. Yatsuboshi, R. and Tsuda, T., "An hi-House Network Configuration for
Distributed Intelligence", Evolutions in Computer Communications, pp.
155-160, North-Holland, New York, 1978.

9. Booth, G.M., "Honeywell's Distributed Systems Environment",
Evolutions in Computer Communications, pp. 347-351, North-Holland,
New York, 1978.

10. Computer Corporation of America, Technical Report CCA-88-01,
OVERVIEW OF SHARD: A SYSTEM FOR HIGHLY AVAILABE
REPLICATED DATA, by Sarin, S., DeWitt, M., and R. Rosenberg,
Cambridge, May, 1988.

106

11. Ladkin, P., Specification of Time Dependencies and Synthesis of
Concurrent Processes, Kestrel Institute, 1987.

12. Zhae, Wei and Ramamritham, K., Distributed Scheduling Using Biddm
and Focused Addressing, The University of Massachusetts, Amherst,
1985.

13. Chu, Wesley W. and Leung, K., Task Response Time Model & Its
Applications for Real-Tinme Distributed Processing Systems, The
University of California. Los Angeles, 1984.

14. Apers, Peter, "Data Allocation in Distributed Database Systems,"
ACM Transactions on Database Systems, Vol. 13, No. 3, pp. 263-304,
September, 1988.

15. Musgrave, Bill, "Network Management: Keeping the Connection",
Datamation, vol. 33, no. 17, pp. 98-107, September 1987.

16. Berry, DPCM(SW) R., of the Naval Military Personnel Command,
Electronic letter to the author, February 21, 1989.

17. Cox, Brad J., Object-Oriented Programming - An Evolutionary
A mrch, Addison-Wesley, Reading, MA, 1986.

18. Orenstein, J., Goldhirsch, D., and Manola, F., "The Architecture of the
PROBE Database System", PROBE Project Working Paper, Cambridge.

19. F. Manola, and Orenstein, J., "Toward a General Spatial Data Model
for an Object-Orientated DBMS", Proceedings Twelfth International
Conference on Very Large Databases, Kyoto, Japan, August 1986.

20. Berzins, V., Robust Generation of Unique Identifiers in Distributed
Systems, Naval Postgraduate School, Monterey, CA, June 1987.

21. Berzins, V., "Cache Management in Software Engineering Databases",
Proceedings on the First Internation Workshop on Computer Aided
Software Engineerng, Cambridge, pp. 523-528, May 1987.

22. Ketabachi, M. and Berzins, V., "Mathematical Model of Composite
Objects and its Application for Organizing Efficient Engineering Data
Bases", IEEE Transactions on Software Engineering, January 1988.

23. Luqi, "Knowledge Base Support for Rapid Prototyping", IEEE Ex=,
vol. 3, no. 4, pp. 9-18, November 1988.

107

24. Huseth, S., and King, T., A Common Framework for Knowledge-
Based Programming, Minneapolis, April, 1988.

25. Huseth, S., and others, KBSA Framework Final Technical Reporgt Pha5e
1, Minneapolis, July 18, 1988.

26. Wyrick, Lynn, System Decision Paper for the Support Programs for
Incentives. Retention and Training Assignments, p. 4, May 1987.

27. Naval Data Automation Command, NAVDAC ADVISORY
BULLEIN, Bulletin No. 77, Washington, DC: Department of the
Navy, May 15, 1986.

28. Air Force Computer Acquisition Center, AFCAC Contract No. F19630-
86-D-0002, February 28, 1986.

29. Kirchner, Jake, "Government Leads the Way, Zenith Chief Says,"
Government Computer News, p. 10, December 19, 1988.

30. Bass, Brad, "AF Suspends Z-248 Buys," Government Computer News,
pp. 1-4, January 8, 1988.

31. Danca, Richard, "After Z-248, What Next?", Government Computer
News, p. 8+, April 15, 1988.

32. Danca, Richard, "Air Force Moves Desktop III Proposal Deadline to
March," Government Computer News, p. 8, February 6, 1989.

33. Computer Corporation of America, Model 204 System Overview,
Cambridge, 1987.

34. Hsaio, D., and Kamel, M., Heterogeneous Databases: Proliferations.
Issues and Solutions, Naval Postgraduate School, Monterey, CA,
January 1989.

35. Stoopman, G., of the Naval Military Personnel Command, Electronic
Letter to the author, March 1, 1989.

108

BIBLIOGRAPHY

Fukuda, Z., "A Study of Centralized and Distributed Processing", Evolutions
in Computer Communications, North-Holland, New York, 1978.

Ketabachi, M. and Berzins, V., "Modeling and Managing CAD Databases",
IEEE Computer, vol. 20, no. 2, February 1987.

Stallings, W., Data and Computer Communications, 2nd ed., Macmillan,
New York, 1988.

Wei, S. and G. Lee, "Extra Group Network", Computer Architecture News,
Washington, DC, 1988.

Wemikoff, S., "An Overview of Database Access and Remote Computing
Communications Service", Evolutions in Computer Communications, North-
Holland, New York, 1978.

109

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Office of Naval Research
Attn: CDR Michael Gehl (Code 1224)
800 N. Quincy Street
Arlington, VA 22217-5000

4. Naval Military Personnel Command 10
Attn: Mr Gerry Stoopman (NMPC-47)
Washington, DC 20370

5. SYSCON Corporation
Attn: Mr. Robert Kidwell
1000 Thomas Jefferson, NW
Washington, DC 20007

6. SYSCON Corporation
Attn: Mr. Robert Lovell
1000 Thomas Jefferson, NW
Washington, DC 20007

7. Xerox Advanced Information Technology
Attn: Ms. Rita Bergman
King Street Station
1800 Diagonal Road, Suite 300
Alexandria, VA 22314

8. Dr. Valdis Berzins 2
Code 52BE
Naval Postgraduate School
Monterey, CA. 93943-5004

9. Fleet Combat Directional Systems Support Activity 2
Attn: Lt. Lynn Wyrick
San Diego, CA 92147-5081

110

10. Honeywell Systems and Research Center
Attn: Mr. Steve Huseth
3660 Technology Drive
Minneapolis, MN 55418

11. Naval Military Personnel Command
Attn: Mr. Mike McNeill (NMPC-16F)
Washington, DC 20370

12. Chief of Naval Operations
Attn: Dr. Earl Chavis (OP-162)
Washington, DC 20350

13. Mr. George Dailey
Oak Ridge National Laboratories
Oak Ridge, TN 37830

14. Naval Regional Data Automation Command
NARDAC, Washington
Attn: Mr. Dennis Hardy (Code 42)
Washington, DC 20374

15. Enlisted Personnel Management Center
Attn: Mr. Lew Comett (Code 30)
New Orleans, LA 70159

16. Naval Military Personnel Command
Attn: Capt. R. J. Hayes (NMPC-4B)
Washington, DC 20370

17. Naval Military Personnel Command
Attn: Capt. T. 1. Eubanks (NMPC-00B)
Washington, DC 20370

18. Chief of Naval Operations
Attn: Dr. R. M. Carroll (OP-01B2)
Washington, DC 20350

19. Naval Research Laboratory
Attn: Dr. Elizabeth Wald (Code 5150)
Washington, DC 20375-5000

20. Navy Ocean System Center
Attn: Linwood Sutton (Code 423)
San Diego, CA 92152

111

21. National Science Foundation
Attn: Dr. William Wulf
Washington, DC 20550

22. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn: Dr. Jacob Schwartz
1400 Wilson Boulevard
Arlington, VA 22209-2308

23. Defense Advanced Research Projects Agency (DARPA)
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, VA 22209-2308

24. COL C. Cox, USAF
JCS (J-8)
Nuclear Force Analysis Division
Washington, DC 20318-8000

25. U.S. Air Force Systems Command
Rome Air Development Center (RADC)
Attn: Mr. Samuel A. DiNitto, Jr.
Griffis Air Force Base, NY 13441-5700

26. U.S. Air Force Systems Command
Rome Air Development Center (RADC)
Attn: Mr. William E. Rzepka
Griffis Air Force Base, NY 13441-5700

112

